A concentration function estimate and intersective sets from matrices

Paul Balister* Randall McCutcheon*

December 7, 2012

Abstract

We give several sufficient conditions on an infinite integer matrix (d_{ij}) for the set $R = \left\{ \sum_{ij \in \alpha, i > j} d_{ij} : \alpha \subset \mathbb{N}, |\alpha| < \infty \right\}$ to be a density intersective set, including the cases $d_{nj} = j^n (1 + O(1/n^{1+\epsilon}))$ and $0 < d_{nj} = o\left(\sqrt{\frac{n}{\log n}}\right)$. For the latter, a concentration function estimate that is of independent interest is applied to sums of sequences of 2-valued random variables whose means may tend to ∞ as $\sqrt{\frac{n}{\log n}}$.

1 Introduction

This paper is concerned with density intersective sets in \mathbb{Z} .

Definition. A set $R \subset \mathbb{Z}$ is density intersective if for every $A \subset \mathbb{N}$ with $d^*(A) := \limsup_{b-a \to \infty} \frac{|A \cap \{a+1,\dots,b\}|}{b-a} > 0$, one has $R \cap (A-A) \neq \emptyset$.

According to the Furstenberg correspondence principle, R is density intersective if and only if it is a set of measurable recurrence, i.e., if for every invertible measure preserving transformation T of a probability space (X, \mathcal{A}, μ) and every $A \in \mathcal{A}$ with

^{*}Department of Mathematical Sciences, University of Memphis, Memphis TN 38111, USA. E-mail: pbalistr@memphis.edu, rmcctchn@memphis.edu

 $\mu(A) > 0$, there is some $n \in R$ such that $\mu(A \cap T^{-n}A) > 0$; see [F]. Proofs here proceed via the ergodic-theoretic formulation.

We will address some cases of the following conjecture, which is implicit in [BFM].

Conjecture 1.1. Let $(d_{ij})_{ij\in\mathbb{N}}$ be an infinite matrix with entries from \mathbb{Z} . Then $R = \{\sum_{i,j\in\alpha} d_{ij} : \alpha \subset \mathbb{N}, \ 0 < |\alpha| < \infty\}$ is density intersective.

Anecdotal evidence for the truth of the conjecture is provided by the fact that the set R in question is in general *chromatically intersective*, i.e., it meets $\bigcup_{i=1}^{r} (C_i - C_i)$ whenever $\mathbb{N} = \bigcup_{i=1}^{r} C_i$ is a finite partition. This fact follow follows from the more powerful polynomial Hales-Jewett Theorem [BL]; however see Section 1.7 of [Mc1] for a direct proof.

Here are a few cases in which Conjecture 1.1 was previously known to hold:

- 1. $d_{ij} = 1$. This is Sárközy's theorem [S], which states that the set of square numbers is density intersective.
- 2. $d_{ij} = \sum_{t=1}^k n_i^{(t)} m_j^{(t)}$, where $n_i^{(t)}, m_j^{(t)} \in \mathbb{Z}$ are arbitrary. See [BFM].
- 3. $d_{ij} = \sum_{t=1}^k n_i^{(t)} m_j^{(t)}$ if $i \geq j$, $d_{ij} = 0$ otherwise; where $n_i^{(t)}, m_j^{(t)} \in \mathbb{Z}$, are arbitrary. See [BHåM].

In this paper, we use a mixture of ergodic theory, ultrafilter methods, combinatorial reasoning and harmonic analysis to provide an affirmative answer in several new cases, encompassing those in which $d_{nj} = j^n(1 + O(1/n^{1+\epsilon}))$ and those in which $d_{nj} = o(\sqrt{\frac{n}{\log n}})$ as $n \to \infty$ for each fixed j. Higher degree versions of our results are possible, though we confine ourselves here to degree two in order to simplify the exposition.

A distinguishing feature of our results is a greater robustness (insensitivity to perturbation of the matrix (d_{ij})) than in examples 1–3 above. Indeed, rate-of-growth considerations together with mildly restrictive inequalities in the columns of the matrix (d_{ij}) will be used in place of the more constraining equations characterizing 1–3.

2 Ultrafilters on the finite subsets of \mathbb{N}

In this section we introduce and elaborate on a recently developed (cf. [B, BM1, BM2]) ultrafilter based methodology for dealing with recurrence questions in ergodic theory. Although this material is somewhat esoteric, our proofs seem to require it.

Definition. If S is a set, we denote by $\mathcal{F}(S)$ the set of non-empty, finite subsets of S. We abbreviate $\mathcal{F}(\mathbb{N})$ by simply \mathcal{F} , and for $n \in \mathbb{N}$, write $\mathcal{F}_n = \{\alpha \in \mathcal{F} : \min \alpha > n\} = \mathcal{F}(\{n+1, n+2, \dots\}).$

Definition. Let $A \subset \mathcal{F}$. The upper density of A is the number

$$\overline{d}(A) = \limsup_{n \to \infty} \frac{|A \cap \mathcal{F}(\{1, 2, \dots, n\})|}{2^n}.$$

The lower density $\underline{d}(A)$ is defined similarly. Note that $\overline{d}(\mathcal{F}_n) = \underline{d}(\mathcal{F}_n) = \frac{1}{2^n}$.

For $\alpha, \beta \in \mathcal{F}$, write $\alpha < \beta$ if $\max \alpha < \min \beta$. If $\alpha < \beta$, write $\alpha * \beta = \alpha \cup \beta$. ($\alpha * \beta$ is undefined otherwise.)

One may check that the pair $(\mathcal{F}, *)$ is an adequate partial semigroup in the sense of [BBH] (see also [HM]). Briefly, this means that * maps a subset of $\mathcal{F} \times \mathcal{F}$ to \mathcal{F} , is associative for all triples where defined, and for any $\alpha_1, \ldots, \alpha_n \in \mathcal{F}$ there is a β such that $\alpha_i * \beta$ is defined for all $i, 1 \leq i \leq n$.

We will be dealing with the Stone-Čech compactification $\beta \mathcal{F}$ of \mathcal{F} . We take the points of $\beta \mathcal{F}$ to be ultrafilters on \mathcal{F} , the principal ultrafilters being identified with the points of \mathcal{F} . Given a set $A \subset \mathcal{F}$, the closure of A is given by $\overline{A} = \{p \in \beta \mathcal{F} : A \in p\}$. The set $\{\overline{A} : A \subset \mathcal{F}\}$ is a basis for the closed (and also the open) sets of $\beta \mathcal{F}$.

For $\alpha \in \mathcal{F}$ and $A \subset \mathcal{F}$, write $\alpha^{-1}A = \{\beta \in \mathcal{F}_{\max \alpha} : \alpha * \beta \in A\}$.

Definition. Let $\delta \mathcal{F} = \bigcap_n \overline{\mathcal{F}_n}$. Now for $p \in \beta \mathcal{F}$ and $q \in \delta \mathcal{F}$, define $p * q \in \beta \mathcal{F}$ by the rule $A \in p * q$ if and only if $\{\alpha \in \mathcal{F} : \alpha^{-1}A \in q\} \in p$.

One can show that this extends * as previous introduced and remains associative where defined. Moreover, $(\delta \mathcal{F}, *)$ is a compact Hausdorff right topological semigroup. (For more information, see [HM, Section 2].)

Any compact Hausdorff right topological semigroup contains an idempotent. An idempotent $p \in \delta \mathcal{F}$ having the property that $\overline{d}(A \cap \mathcal{F}_n) > 0$ for every $A \in p$ and $n \in \mathbb{N}$ is called an *essential* idempotent.

Proposition 2.1. There exists an essential idempotent $p \in \delta \mathcal{F}$.

Proof. Let $\mathcal{L} = \{A \subset \mathcal{F} : \exists n \in \mathbb{N} \text{ such that } \underline{d}(A \cap \mathcal{F}_n) = \frac{1}{2^n}\}$. One may show that \mathcal{L} is a filter, and so by Zorn's lemma is contained in some ultrafilter, call it q. As $\mathcal{F}_n \in \mathcal{L} \subset q$ for all n, one has $q \in \bigcap_n \overline{\mathcal{F}_n} = \delta \mathcal{F}$. We claim that for every $A \in q$ and $n \in \mathbb{N}$, one has $\overline{d}(A \cap \mathcal{F}_n) > 0$. For, if $\overline{d}(A \cap \mathcal{F}_n) = 0$, then $\underline{d}(A^c \cap \mathcal{F}_n) = \frac{1}{2^n}$, so that $A^c \in \mathcal{L} \subset q$, and hence $A \notin q$.

Next, note that $\delta \mathcal{F} * q = \{r * q : r \in \delta \mathcal{F}\}$ is a closed left ideal (in particular, a compact Hausdorff right topological semigroup itself) in $\delta \mathcal{F}$, and hence contains an idempotent p. One has p = r * q for some r. If $A \in p = r * q$ and $n \in \mathbb{N}$, then $\{\alpha \in \mathcal{F} : \alpha^{-1}A \in q\} \in r$. In particular, since $r \in \delta \mathcal{F} \subset \overline{\mathcal{F}_n}$, $\mathcal{F}_n \in r$, and so there is some $\alpha \in \mathcal{F}_n$ such that $\alpha^{-1}A \in q$. Since $\alpha^{-1}A \subset \mathcal{F}_n$, $\overline{d}(\alpha^{-1}A) = \overline{d}(\alpha^{-1}A \cap \mathcal{F}_n) > 0$. Also, for all m > n one has

$$|A \cap \mathcal{F}(\{n+1, n+2, \dots, m\})| \ge |\alpha^{-1}A \cap \mathcal{F}(\{n+1, n+2, \dots, m\})|$$

(the map $\beta \mapsto \alpha * \beta$ from the latter set to the former is injective), hence $\overline{d}(A \cap \mathcal{F}_n) > 0$.

Let X be a topological space and $f: \mathcal{F} \to X$ a function. If $p \in \beta \mathcal{F}$ and $x \in X$, we write p- $\lim_{\alpha} f(\alpha) = x$ if for every neighborhood U of x, $\{\alpha : f(\alpha) \in U\} \in p$. Note that if X is compact and Hausdorff, then the p-limit always exists and is unique.

3 \mathcal{F} -linear and \mathcal{F} -quadratic functions

Throughout this section, G will denote a general countable additive abelian group, though we will consider only $G = \mathbb{Z}$ and the direct sum of countably many copies of \mathbb{Z}_{k+1} , which we denote by $G = \bigoplus_{i \in \mathbb{N}} \mathbb{Z}_{k+1}$, in the sequel. (Though we are interested primarily in the integers, some of our constructions are imported from $\bigoplus_{i \in \mathbb{N}} \mathbb{Z}_{k+1}$; proofs for general G are in any case virtually identical.) We will also consider unitary and measure preserving actions of G on Hilbert spaces and probability spaces, respectively. These will be denoted interchangeably by G or by $(T_g)_{g \in G}$, where $T_{g+h} = T_g T_h$.

If $A \subset G$, we will write, for $k \in \mathbb{N}$, kA for the k-fold sum $A + A + \cdots + A$. That is, $kA = \{a_1 + a_2 + \cdots + a_k : a_i \in A, 1 \le i \le k\}$.

We say that $S \subset G$ is *syndetic* if there is a finite set $F \subset G$ such that G = S + F.

Definition. A function $v: \mathcal{F} \to G$ is \mathcal{F} -linear if for every $\alpha, \beta \in \mathcal{F}$ with $\alpha < \beta$, one has $v(\alpha * \beta) = v(\alpha) + v(\beta)$. If $k \in \mathbb{N}$, we shall say such v is k-covering if for every $A \subset \mathcal{F}$ with $\overline{d}(A) > 0$, kv(A) - kv(A) is syndetic. We say v is covering if it is k-covering for some k.

Elsewhere in the literature, \mathcal{F} -linear functions are called *IP systems*. The functions of the following definition, meanwhile, are often called *VIP systems* (of degree at most 2).

Definition. A function $v: \mathcal{F} \to G$ is \mathcal{F} -quadratic if for every $\alpha, \beta, \gamma \in \mathcal{F}$ with $\alpha < \beta < \gamma$, one has

$$v(\alpha * \beta * \gamma) - v(\alpha * \beta) - v(\alpha * \gamma) - v(\beta * \gamma) + v(\alpha) + v(\beta) + v(\gamma) = 0.$$
 (1)

We remark that \mathcal{F} -linear functions are \mathcal{F} -quadratic by definition. In practice, we take it that the domain of an \mathcal{F} -linear or \mathcal{F} -quadratic function v need not be all of \mathcal{F} ; for example, it is sufficient that v be defined on \mathcal{F}_n for some n.

Proposition 3.1 (cf. [Mc2, Theorem 2.5]). The map $v: \mathcal{F} \to G$ is \mathcal{F} -linear if and only if there is a sequence $(d_i)_{i\in\mathbb{N}}$ in G such that $v(\alpha) = \sum_{i\in\alpha} d_i$. The map $v: \mathcal{F} \to G$ is \mathcal{F} -quadratic if and only if there is a matrix $(c_{ij})_{i,j\in\mathbb{N}}$ whose entries lie in G such that $v(\alpha) = \sum_{i,j\in\alpha} c_{ij}$.

Note that by replacing c_{ij} by $c_{ij} + c_{ji}$ when i > j we may assume that $c_{ij} = 0$ for i < j in the second part of Proposition 3.1.

According to Proposition 3.1 (with $G = \mathbb{Z}$), Conjecture 1.1 is equivalent to the assertion that $v(\mathcal{F})$ is density intersective for every \mathcal{F} -quadratic function v. In the remainder of this section we shall extend the definition of covering to \mathcal{F} -quadratic functions and confirm Conjecture 1.1 for all covering \mathcal{F} -quadratic functions v.

Proposition 3.2 (cf. [Mc3, Lemma 1.2]). Let $p \in \delta \mathcal{F}$ be idempotent and let $v : \mathcal{F} \to G$ be \mathcal{F} -quadratic, where G is a commutative Hausdorff topological group. If the limit $g := p\text{-}\lim_{\alpha} v(\alpha)$ exists, then g = 0.

Proof. Let U be a neighborhood of the identity $0 \in G$ and write $A = \{\gamma : v(\gamma) \in g + U\}$. Then as $p-\lim_{\alpha} v(\alpha) = g$, we have $A \in p$. As p is idempotent, one also has $\{\beta : \{\gamma : \beta * \gamma \in A\} \in p\} \in p$. Hence, by requiring also that $\beta, \gamma \in A$,

$$A':=\{\beta:\{\gamma:\beta*\gamma,\beta,\gamma\in A\}\in p\}\in p.$$

Similarly $\{\alpha : \{\beta : \alpha * \beta \in A'\} \in p\} \in p$, and requiring also that $\alpha, \beta \in A'$ gives

$$\{\alpha: \{\beta: \{\gamma: \alpha*\beta*\gamma, \alpha*\beta, \alpha*\gamma, \beta*\gamma, \alpha, \beta, \gamma \in A\} \in p\} \in p\} \in p\}$$

Hence there exist $\alpha, \beta, \gamma \in \mathcal{F}$ with $v(\alpha * \beta * \gamma)$, $v(\alpha * \beta)$, $v(\alpha * \gamma)$, $v(\beta * \gamma)$, $v(\alpha)$, $v(\beta)$, and $v(\gamma)$ all lying in g + U. Thus by (1), $0 \in 4(g + U) - 3(g + U)$ and so $g \in 3U - 4U$. As U was arbitrary, g = 0.

Definition. Let \mathcal{H} be a separable Hilbert space and G a unitary action on \mathcal{H} . Write

$$\mathcal{K}_G = \{ f \in \mathcal{H} : \{ T_g f : g \in G \} \text{ is precompact in the norm topology} \}.$$

Theorem 3.3 (cf. [Ma]). \mathcal{K}_G is the closed linear subspace of \mathcal{H} generated by the eigenfunctions of the action (T_g) , i.e., by those f for which there is a character $\omega \colon G \to S^1 \subset \mathbb{C}$ such that $T_g f = \omega(g) f$.

Let (X, \mathcal{A}, μ, G) be an invertible measure preserving system on a probability space. For $g \in G$, $x \in X$ and $f \in L^2(X)$, write $T_g f(x) = f(T_g x)$. In this way, G acts unitarily on $L^2(X)$. The action (T_g) is weakly mixing if and only if \mathcal{K}_G is spanned by the constants.

The following theorem is the key to our method; it implies that when p is essential, the weak operator p-limit of $T_{v(\alpha)}$, where v is \mathcal{F} -linear and covering, does not depend on v.

Theorem 3.4. Let \mathcal{H} be a separable Hilbert space and let G be a unitary action on \mathcal{H} . Suppose $p \in \delta \mathcal{F}$ is an essential idempotent and let $v : \mathcal{F} \to G$ be \mathcal{F} -linear and covering. For $f \in \mathcal{H}$ write $Pf = p\text{-}\lim_{\alpha} T_{v(\alpha)}f$, where the limit is taken in the weak topology. Then P is the orthogonal projection onto \mathcal{K}_G .

Proof. The limit in question exists and satisfies $||Pf|| \le ||f||$ because, restricted to closed bounded subsets of \mathcal{H} , the weak topology is compact and metrizable. Clearly P is linear, and it is well known that any continuous linear self-map P of a Hilbert space with $||P|| \le 1$ and $P^2 = P$ is an orthogonal projection. We show now that $P^2 = P$.

Let $f \in \mathcal{H}$ with $||f|| \leq 1$, let $\varepsilon > 0$ and let ρ be a metric for the weak topology on the unit ball of \mathcal{H} . Let $A_1 = \{\alpha : \rho(Pf, T_{v(\alpha)}f) < \varepsilon\} \in p$ so that, by idempotence, $\{\alpha : \alpha^{-1}A_1 \in p\} \in p$. Let $A_2 = \{\alpha : \rho(P^2f, T_{v(\alpha)}Pf) < \varepsilon\} \in p$ and fix $\beta \in A_2 \cap \{\alpha : \alpha^{-1}A_1 \in p\}$. Let

$$A_{\beta} = \beta^{-1} A_1 \cap \{ \gamma > \beta : \rho(PT_{v(\beta)}f, T_{v(\gamma)}T_{v(\beta)}f) < \varepsilon \}.$$

Then $A_{\beta} \in p$, so in particular A_{β} is non-empty. Now choose $\gamma \in A_{\beta}$. One has

$$\rho(P^2f, Pf) \le \rho(P^2f, T_{v(\beta)}Pf) + \rho(PT_{v(\beta)}f, T_{v(\gamma)}T_{v(\beta)}f) + \rho(T_{v(\beta*\gamma)}f, Pf) \le 3\varepsilon,$$

where we have used the facts that P commutes with $T_{v(\beta)}$ (an easy exercise), $\beta \in A_2$, $\gamma \in A_\beta$, $\beta * \gamma \in A_1$, and $v(\beta * \gamma) = v(\beta) + v(\gamma)$. Since ε and f were arbitrary, this shows that $P^2 = P$ and hence that P is an orthogonal projection.

Since range(P) = ker(1 - P) is a closed linear subspace of \mathcal{H} , in order to show that $\mathcal{K}_G \subset \text{range}(P)$ it suffices to show that all eigenfunctions are in range(P). Suppose we are given an eigenfunction f for (T_g) with eigencharacter $\omega \colon G \to S^1 \subset \mathbb{C}$, so that $T_g f = \omega(g) f$. The limit p-lim_{α} $\omega(v(\alpha))$ exists since S^1 is compact. But the function $u \colon \mathcal{F} \to S^1$ defined by $u(\alpha) = \omega(v(\alpha))$ is \mathcal{F} -linear; that is, one has, for $\alpha < \beta$, $u(\alpha * \beta) = u(\alpha)u(\beta)$. By Proposition 3.2, therefore, p-lim_{α} $\omega(v(\alpha)) = 1$. From this it easily follows that p-lim_{α} $T_{v(\alpha)} f = f$. Hence $f \in \text{range}(P)$.

Finally we show that range(P) $\subset \mathcal{K}_G$. Since v is covering, there is k such that v is k-covering. Let $f \in \text{range}(P)$. Then $||Pf|| = ||T_{v(\alpha)}f|| = ||f||$, so that $p\text{-}\lim_{\alpha} T_{v(\alpha)}f$ exists and equals Pf = f in the norm topology (as $p\text{-}\lim_{\alpha} ||T_{v(\alpha)}f - Pf||^2 = 2||Pf||^2 - 2|$

$$||T_g f - T_r f|| = ||T_{\sum (v(b_i) - v(c_i))} f - f|| \le \sum_{i=1}^k ||T_{v(b_i)} f - T_{v(c_i)} f|| < 2k\varepsilon.$$

We wish to extend the previous theorem to a certain class of \mathcal{F} -quadratic functions. This motivates the following definition.

Definition. Let $v: \mathcal{F} \to G$ be \mathcal{F} -quadratic and let $\alpha \in \mathcal{F}$. The derivative of v with step α is given by $D_{\alpha}v(\beta) = v(\alpha * \beta) - v(\alpha) - v(\beta)$, $\beta > \alpha$. One may easily show that $D_{\alpha}v$ is \mathcal{F} -linear. If $D_{\alpha}v$ is also covering for all $\alpha \in \mathcal{F}$, we shall say that v is covering.

As is typical for proofs of this type, a Van der Corput lemma is used for the extension.

Theorem 3.5 (Van der Corput lemma). Assume that $(u_{\alpha})_{\alpha \in \mathcal{F}}$ is a bounded sequence in a Hilbert space. Let $p \in \delta \mathcal{F}$ be an idempotent. If $p\text{-}\lim_{\beta} p\text{-}\lim_{\alpha} \langle u_{\beta*\alpha}, u_{\alpha} \rangle = 0$ then $p\text{-}\lim_{\alpha} u_{\alpha} = 0$ in the weak topology.

Proof. If $\gamma = \{i_1, i_2, \dots, i_k\}$, where $i_1 < i_2 < \dots < i_k$, we will write α_{γ} for $\alpha_{i_1} * \alpha_{i_2} * \dots * \alpha_{i_k}$. We shall use the convention that $\alpha_{\emptyset} = \emptyset$.

Without loss of generality we will assume that $||u_{\alpha}|| \leq 1$, $\alpha \in \mathcal{F}$. Suppose to the contrary that $p-\lim_{\alpha} u_{\alpha} = \tilde{u} \neq 0$. Let $\delta = \frac{\|\tilde{u}\|^2}{2}$ and pick $k \in \mathbb{N}$ and $\varepsilon > 0$ such that $\frac{1}{k} + \varepsilon < \frac{\delta}{2}$. We shall inductively choose an increasing sequence $\alpha_1, \ldots, \alpha_k \in \mathcal{F}$ such that for all $j, 1 \leq j \leq k$, one has

- (i) for every non-empty $\gamma, \beta \in \{1, \dots, j\}$ with $\beta < \gamma, |\langle u_{\alpha_{\beta} * \alpha_{\gamma}}, u_{\alpha_{\gamma}} \rangle| < \varepsilon$;
- (ii) for every $\gamma, \beta \subset \{1, \dots, j\}$ with $\emptyset \neq \beta < \gamma$, $p\text{-lim}_{\alpha} |\langle u_{\alpha_{\beta}*\alpha_{\gamma}*\alpha}, u_{\alpha_{\gamma}*\alpha} \rangle| < \varepsilon$;
- (iii) for every non-empty $\beta \subset \{1, \ldots, j\}, \langle u_{\alpha_{\beta}}, \tilde{u} \rangle > \delta;$
- (iv) for every $\beta \subset \{1, \ldots, j\}$, $\{\omega > \alpha_{\beta} : \langle u_{\alpha_{\beta}*\omega}, \tilde{u} \rangle > \delta\} \in p$; and
- (v) for every $\beta \subset \{1, \ldots, j\}$, $\{\omega > \alpha_{\beta} : p\text{-}\lim_{\alpha} |\langle u_{\alpha_{\beta}*\omega*\alpha}, u_{\alpha} \rangle| < \varepsilon\} \in p$.

Having done this, let $v_i = u_{\alpha_1 * \alpha_2 * \cdots * \alpha_i}$, $1 \le i \le k$, and observe that, by (i), $|\langle v_i, v_j \rangle| < \varepsilon$ for all i and j with $1 \le i, j \le k$, $i \ne j$. From this it follows that $\langle \sum_{i=1}^k v_i, \sum_{i=1}^k v_i \rangle < k + k^2 \varepsilon < \frac{1}{2} k^2 \delta$, which implies that $|\langle \sum_{i=1}^k v_i, \tilde{u} \rangle| \le \|\sum_{i=1}^k v_i\| \|\tilde{u}\| < \sqrt{\frac{1}{2} k^2 \delta} \sqrt{2\delta} = k\delta$. On the other hand, (iii) implies that $\langle v_i, \tilde{u} \rangle > \delta$ for all i, so that $\langle \sum_{i=1}^k v_i, \tilde{u} \rangle > k\delta$, a contradiction that completes the proof.

Suppose then that $0 \le j < k$ and $\alpha_1, \ldots, \alpha_j$ have been chosen. By the induction hypothesis, for some $\varepsilon' < \varepsilon$,

$$B = \left(\bigcap_{\beta,\gamma\subset\{1,\ldots,j\},\,\emptyset\neq\beta<\gamma} \{\omega > \alpha_{\beta}*\alpha_{\gamma}: |\langle u_{\alpha_{\beta}*\alpha_{\gamma}*\omega}, u_{\alpha_{\gamma}*\omega}\rangle| < \varepsilon'\}\right)$$

$$\cap \left(\bigcap_{\beta\subset\{1,\ldots,j\}} \{\omega > \alpha_{\beta}: \langle u_{\alpha_{\beta}*\omega}, \tilde{u}\rangle > \delta\}\right)$$

$$\cap \left(\bigcap_{\beta\subset\{1,\ldots,j\}} \{\omega > \alpha_{\beta}: p\text{-}\lim_{\alpha} |\langle u_{\alpha_{\beta}*\omega*\alpha}, u_{\alpha}\rangle| < \varepsilon\}\right)$$

$$= B_{1} \cap B_{2} \cap B_{3}$$

is a member of p. (Briefly, $B_1 \in p$ by (ii), $B_2 \in p$ by (iv) and $B_3 \in p$ by (v).) As p is idempotent, we may choose $\alpha_{j+1} \in B$ such that $\alpha_{j+1}^{-1}B \in p$.

One now checks that (i)–(v) hold for j replaced by j+1. A few details: (i) follows from $\alpha_{j+1} \in B_1$, (ii) follows from $\alpha_{j+1} \in B_3$ if $j+1 \in \beta$ and from $\alpha_{j+1}^{-1}B_1 \in p$ if $j+1 \in \gamma$, (iii) follows from $\alpha_{j+1} \in B_2$, (iv) follows from $\alpha_{j+1}^{-1}B_2 \in p$ and (v) follows from $\alpha_{j+1}^{-1}B_3 \in p$.

Here is the extension to covering \mathcal{F} -quadratic functions.

Theorem 3.6. Let \mathcal{H} be a separable Hilbert space and let (T_g) be a unitary G-action on \mathcal{H} . Let $p \in \delta \mathcal{F}$ be an essential idempotent and suppose $v \colon \mathcal{F} \to G$ is \mathcal{F} -quadratic and covering. For $f \in \mathcal{H}$, write $Pf = p\text{-}\lim_{\alpha} T_{v(\alpha)}f$, where the limit is taken in the weak topology. Then P is the orthogonal projection onto \mathcal{K}_G .

Proof. As in the proof of Theorem 3.4, we must show that $P = P^2$. Let $f \in \mathcal{H}$ and write $f = f_1 + f_2$, where $f_1 \in \mathcal{K}_G$ and $f_2 \in \mathcal{K}_G^{\perp}$. For $\beta \in \mathcal{F}$ and $h \in \mathcal{H}$, write $P_{\beta}h = p\text{-}\lim_{\alpha} T_{D_{\beta}v(\alpha)}h$. Since $D_{\beta}v$ is \mathcal{F} -linear and covering, by Theorem 3.4 P_{β} is the orthogonal projection onto \mathcal{K}_G . Hence, writing $x_{\alpha} = T_{v(\alpha)}f_2$,

$$\begin{split} p\text{-}\!\lim_{\beta} p\text{-}\!\lim_{\alpha} \langle x_{\alpha}, x_{\beta*\alpha} \rangle &= p\text{-}\!\lim_{\beta} p\text{-}\!\lim_{\alpha} \langle f_2, T_{v(\beta*\alpha)-v(\alpha)} f_2 \rangle \\ &= p\text{-}\!\lim_{\beta} p\text{-}\!\lim_{\alpha} \langle T_{-v(\beta)} f_2, T_{D_{\beta}v(\alpha)} f_2 \rangle \\ &= p\text{-}\!\lim_{\beta} \langle T_{-v(\beta)} f_2, P_{\beta} f_2 \rangle = 0. \end{split}$$

By Theorem 3.5, one has p-lim_{α} $x_{\alpha} = 0$ weakly; that is, $Pf_2 = 0$. On the other hand, just as in the proof of Theorem 3.4, one has $Pf_1 = f_1$, by Proposition 3.2. (Note for this step that the map $\alpha \to \omega(v(\alpha))$ is \mathcal{F} -quadratic.)

Now by a standard argument, a projection theorem yields a recurrence theorem.

Corollary 3.7. Let (X, \mathcal{A}, μ, G) be a measure preserving system, $p \in \delta \mathcal{F}$ an essential idempotent and $v \colon \mathcal{F} \to G$ \mathcal{F} -quadratic and covering, and suppose $\mu(A) > 0$. Then $p\text{-lim}_{\alpha} \mu(A \cap T_{v(\alpha)}A) \ge \mu(A)^2$.

Proof. Let $\mathcal{H} = L^2(X)$ and $f = 1_A \in L^2(X)$. Then one has $p\text{-}\lim_{\alpha} \mu(A \cap T_{v(\alpha)}A) = p\text{-}\lim_{\alpha} \langle f, T_{-v(\alpha)}f \rangle = \langle f, Pf \rangle = \langle Pf, Pf \rangle \geq \mu(A)^2$. (For the final inequality, we used the fact that P is the orthogonal projection onto a space containing the constants.) \square

Combined with the Furstenberg correspondence principle, Corollary 3.7 is sufficient to achieve the primary goal of this section, namely showing that $v(\mathcal{F})$ is density intersective for any covering \mathcal{F} -quadratic function v. It remains to give interesting examples of covering \mathcal{F} -quadratic functions.

4 Examples of covering

In this section we obtain specific applications of Corollary 3.7 as well as additional examples of covering. First we give some background material. See, e.g., [BHiM] for more details.

Any countable discrete abelian group G admits of a $F \emptyset Iner$ sequence, i.e., an exhaustive sequence (Φ_n) of finite subsets of G satisfying, for every $g \in G$, $\frac{|\Phi_n \cap (g + \Phi_n)|}{|\Phi_n|} \to 1$ as $n \to \infty$. Any F \emptyset Iner sequence, in turn, gives rise to a notion of upper density: $\overline{d}_{\Phi}(A) = \limsup_{n \to \infty} \frac{|A \cap \Phi_n|}{|\Phi_n|}$. Such densities are shift invariant: $\overline{d}_{\Phi}(g + A) = \overline{d}_{\Phi}(A)$ for $A \subset G$ and $g \in G$.

Although G may contain countably many disjoint sets of upper density 1, this is not so for shifts of the same set. Indeed, if $\overline{d}_{\Phi}(A) > \frac{1}{k}$ then G cannot contain k disjoint shifts of A. It follows that if $\overline{d}_{\Phi}(A) > 0$ then A - A meets every difference set $D = \{g_i - g_j : i > j\}$. (Here $(g_i)_{i \in \mathbb{N}}$ is any infinite sequence of elements of G.) A thick set is a subset of G that meets every syndetic set (conversely, a set is syndetic if and only if it meets every thick set). Alternatively, $T \subset G$ is thick if for every finite set F, there is some $g \in G$ such that $g + F \subset T$. It is easy to show that any thick set contains a difference set. Therefore if $\overline{d}_{\Phi}(A) > 0$ then any thick set meets A - A. In other words, A - A is syndetic. This leads to the following.

Lemma 4.1. Let (Φ_n) be a Følner sequence for G and let $v: \mathcal{F} \to G$ be \mathcal{F} -linear. Suppose that for some $k \in \mathbb{N}$ and every $A \subset \mathcal{F}$ with $\overline{d}(A) > 0$, one has $\overline{d}_{\Phi}(kv(A)) > 0$. Then v is k-covering.

Proof. Immediate as $\overline{d}_{\Phi}(kv(A)) > 0$ implies kv(A) - kv(A) is syndetic.

Some of our examples require the following theorem.

Theorem 4.2 (cf. [BKMP, Corollary 1]). Assume $k, j, n \in \mathbb{N}$ with $j \leq n$ and let B be a subset of $\{0,1\}^n$, which we view as a subset of $\bigoplus_{i \in \mathbb{N}} \mathbb{Z}_{k+1}$. Suppose moreover that $|B| \geq 2^j$. Then $|kB| \geq (k+1)^j$.

We shall use Theorem 4.2 via the following theorem concerning $\bigoplus_{i\in\mathbb{N}} \mathbb{Z}_{k+1}$. It will assist in the proof of Lemma 4.5 below.

Theorem 4.3. Suppose $k \in \mathbb{N}$ and define $G = \bigoplus_{i \in \mathbb{N}} \mathbb{Z}_{k+1}$, with $(e_i)_{i \in \mathbb{N}}$ its standard generating set $(e_1 = (1, 0, 0, \dots), e_2 = (0, 1, 0, \dots), etc.)$. For $\alpha \in \mathcal{F}$, define $v(\alpha) = \sum_{i \in \alpha} e_i$. Then v is \mathcal{F} -linear and k-covering.

Proof. Let $A \subset \mathcal{F}$ with $\overline{d}(A) > 0$. Choose t large enough that $\overline{d}(A) > 2^{-t}$. Let $\Phi_n = \{a_1e_1 + \dots + a_ne_n : a_i \in \mathbb{Z}_{k+1}, 1 \leq i \leq n\}$. Then $(\Phi_n)_{n \in \mathbb{N}}$ is a Følner sequence. We will show that $\overline{d}_{\Phi}(kv(A)) > (k+1)^{-t}$, which will be sufficient for the proof by Lemma 4.1. Let n_0 be arbitrary and choose $n > n_0$ such that $|A \cap \mathcal{F}(\{1, 2, \dots, n\})| \geq 2^{n-t}$. Setting $A' = A \cap \mathcal{F}(\{1, 2, \dots, n\})$ we may apply Theorem 4.2 and conclude that $|kv(A')| \geq (k+1)^{n-t}$. Since $kv(A') \subset \Phi_n$, this yields $\frac{|kv(A) \cap \Phi_n|}{|\Phi_n|} \geq \frac{|kv(A') \cap \Phi_n|}{|\Phi_n|} \geq (k+1)^{-t}$. Since n_0 was arbitrary and $n > n_0$, we are done.

We shall not make use of the following optional corollary concerning weak mixing actions of $\bigoplus_{i\in\mathbb{N}} \mathbb{Z}_{k+1}$, however it demonstrates nicely what is going on in the results for \mathbb{Z} to come. We include it for afficionados, who may be intrigued to see the conclusion following without the stronger hypothesis of *mild mixing*.

Corollary 4.4. Assume G and v are as in Theorem 4.3. Let (X, A, μ, G) be a weakly mixing measure preserving probability system and let $p \in \delta \mathcal{F}$ be an essential idempotent. Then for any $f, g \in L^2(X)$, one has

$$p\text{-}\lim_{\alpha} \int f T_{v(\alpha)} g \, d\mu = \Big(\int f \, d\mu \Big) \Big(\int g \, d\mu \Big).$$

Proof. Since G is weakly mixing, \mathcal{K}_G consists of the constant functions. Hence by Theorem 3.4, $p-\lim_{\alpha} T_{v(\alpha)}g = Pg$ in the weak topology and $Pg = \int g \, d\mu$ is the projection onto \mathcal{K}_G . Thus

$$p-\lim_{\alpha} \int f T_{v(\alpha)} g = \int f(Pg) d\mu = \int f\left(\int g d\mu\right) d\mu = \left(\int f d\mu\right) \left(\int g d\mu\right).$$

Lemma 4.5. Fix $k \in \mathbb{N}$ and let $(d_n)_{n \in \mathbb{N}}$ be a sequence of natural numbers. Suppose there exists M > 0 such that $k(\sum_{i=1}^n d_i) < d_{n+1} < M(k+1)^{n+1}$ for every large enough $n \in \mathbb{N}$. If $u : \mathcal{F} \to \mathbb{Z}$ is defined by $u(\alpha) = \sum_{i \in \alpha} d_i$, then u is \mathcal{F} -linear and k-covering.

Proof. We assume in the proof that the given string of inequalities holds for all n; the reader may make the minor adjustments for the general case. Let $\Phi_n = \{1, 2, \ldots, M(k+1)^{n+1}\}$, $n \in \mathbb{N}$. Then (Φ_n) is a Følner sequence. Let $A \in \mathcal{F}$ with $\overline{d}(A) > 0$. Choose t large enough that $\overline{d}(A) > 2^{-t}$. Let n_0 be arbitrary and pick $n > n_0$ having the property that $A' = A \cap \mathcal{F}(\{1, 2, \ldots, n\})$ satisfies $|A'| > 2^{n-t}$. Letting $v \colon \mathcal{F}(\{1, 2, \ldots, n\}) \to \mathbb{Z}_{k+1}^n$ be as in the proof of Theorem 4.3, one has, as was the case in that proof, $|kv(A')| \ge (k+1)^{n-t}$. Now define $\pi \colon \mathbb{Z}_{k+1}^n \to \Phi_n$ by $\pi(a_1, a_2, \ldots, a_n) = a_1 d_1 + a_2 d_2 + \cdots + a_n d_n$. The restrictions on (d_i) entail that π is one-to-one, hence $|\pi(kv(A'))| \ge (k+1)^{n-t}$. But by linearity of π , $\pi(kv(A')) = k\pi(v(A'))$. Moreover, it is easily checked that $\pi(v(A')) = u(A')$. Therefore $|ku(A')| \ge (k+1)^{n-t}$. But $ku(A') \subset \Phi_n$, so $\frac{|ku(A) \cap \Phi_n|}{|\Phi_n|} \ge \frac{(k+1)^{-t-1}}{M}$. Since n_0 was arbitrary and $n > n_0$, we have established that $\overline{d}_{\Phi}(ku(A)) \ge \frac{(k+1)^{-t-1}}{M}$, and Lemma 4.1 applies. \square

Combining Lemma 4.5 with Corollary 3.7, we already get new results.

Corollary 4.6. Fix $k \in \mathbb{N}$ and assume that $(c_{ij})_{i,j\in\mathbb{N}}$ is an integer matrix such that $c_{ij} = 0$ when j > i and each column $(d_i = c_{ij})$ satisfies the rate-of-growth condition of Lemma 4.5. Write $v(\alpha) = \sum_{i,j\in\alpha} c_{ij}$, $\alpha \in \mathcal{F}$. Then if (X, \mathcal{A}, μ, T) is an invertible measure preserving probability system, $\mu(A) > 0$, and $p \in \delta \mathcal{F}$ is an essential idempotent, then $p\text{-}\lim_{\alpha} \mu(A \cap T_{v(\alpha)}A) \geq \mu(A)^2$.

Proof. One has $D_{\alpha}v(\beta) = \sum_{i \in \beta} d_i$, where $d_i = \sum_{j \in \alpha} c_{ij}$. Since each column of the matrix satisfies the rate-of-growth condition of Lemma 4.5, so does (d_i) , which is a finite sum of columns. By Lemma 4.5, $D_{\alpha}v$ is k-covering, which implies, as α is arbitrary, that v is covering. Hence the conclusion follows from Corollary 3.7.

Corollary 4.7 (of the proof of Lemma 4.5). Fix $k \in \mathbb{N}$ and let $(d_n)_{n \in \mathbb{N}}$ be a sequence of natural numbers. Suppose there exists M > 0 and a one-to-one sequence (m_i) in \mathbb{N} such that $k(\sum_{i=1}^n d_{m_i}) < d_{m_{n+1}} < M(k+1)^{n+1}$ for every large enough $n \in \mathbb{N}$. If $u : \mathcal{F} \to \mathbb{Z}$ is defined by $u(\alpha) = \sum_{i \in \alpha} d_i$, then u is \mathcal{F} -linear and k-covering.

Proof. We use the fact that if Φ_n is a Følner sequence and (x_n) is an arbitrary sequence then $\Psi_n = \Phi_n + x_n$ defines a Følner sequence (Ψ_n) .

Modify the proof of Lemma 4.5 as follows. Once n is chosen, pick $N > m_n$ such that $A' = A \cap \mathcal{F}(\{1, 2, \dots, N\})$ satisfies $|A'| > 2^{N-t}$. For $\alpha \subset \{1, 2, \dots, N\} \setminus \{m_1, \dots, m_n\}$ write $A_{\alpha} = \{B \subset \{m_1, \dots, m_n\} : \alpha \cup B \in A'\}$. As $\sum_{\alpha} |A_{\alpha}| = |A'|$, we can choose $\alpha = \alpha_n$ so that $|A_{\alpha_n}| > 2^{n-t}$. Run the rest of the proof with A_{α_n} in place of A' to get $\frac{|ku(A_{\alpha_n}) \cap \Phi_n|}{|\Phi_n|} \ge \frac{(k+1)^{-t-1}}{M}$, which implies that $\frac{|ku(A) \cap (x_n + \Phi_n)|}{|x_n + \Phi_n|} \ge \frac{(k+1)^{-t-1}}{M}$, where

 $x_n = ku(\alpha_n)$. One concludes that $\overline{d}_{\Psi}(ku(A)) \geq \frac{(k+1)^{-t-1}}{M}$, where $\Psi_n = x_n + \Phi_n$. In particular, ku(A) - ku(A) is syndetic.

Corollary 4.8. Let (d_n) be an unbounded sequence of natural numbers and set $v(\alpha) = \sum_{n \in \alpha} d_n$. Define $r_n = \min_{1 \leq y < n} \frac{d_n}{d_y}$. Suppose there is a $k \in \mathbb{N}$ such that for every sequence of indices (m_n) with $d_{m_n} > k^n$ one has $\sum_{n=1}^{\infty} (r_{m_n} - 1) < \infty$. Then v is covering.

Proof. Let m_1 be the least integer such that $d_{m_1} > k$. Having chosen m_1, \ldots, m_n , let m_{n+1} be the least index satisfying $k \sum_{i=1}^n d_{m_i} < d_{m_{n+1}}$. The sequence $(m_n)_{n \in \mathbb{N}}$ is increasing, so one-to-one, and $d_{m_{n+1}} > k d_{m_n}$, so $d_{m_n} > k^n$ by induction on n. By Corollary 4.7 we need only find M such that $d_{m_{n+1}} < M(k+1)^{n+1}$ for all n. Put $N_n = k \sum_{i=1}^n d_{m_i}$. Since $k \sum_{i=1}^n d_{m_i} \ge d_y$ for $y < m_{n+1}$, one has $d_{m_{n+1}} \le r_{m_{n+1}} N_n$. Therefore, $N_{n+1} = N_n + k d_{m_{n+1}} \le (1 + k r_{m_{n+1}}) N_n$. Since $\sum_{n=1}^\infty (r_{m_n} - 1) < \infty$, $r_{m_{n+1}}$ is bounded and the product $\prod_n \left(\frac{1 + k r_{m_n}}{1 + k}\right) = \prod_n \left(1 + \frac{k (r_{m_n} - 1)}{1 + k}\right)$ converges. Hence $d_{m_{n+1}} < r_{m_{n+1}} N_1 \prod_{i=2}^{n+1} (1 + k r_{m_i}) \le M(k+1)^{n+1}$ for some M independent of n.

Examples. The map $v(\alpha) = \sum_{n \in \alpha} d_n$ is covering by Corollary 4.8 for a great many sequences (d_n) , including the following:

- 1. $d_n = \lfloor n^{\gamma} \rfloor$, where $\gamma > 0$.
- 2. $d_n = \lfloor \exp(n^{\gamma}) \rfloor$, where $0 < \gamma < \frac{1}{2}$.

We sketch a justification of 2. In this case $r_x \approx \exp\left(x^{\gamma} - (x-1)^{\gamma}\right) \approx \exp\left(\gamma x^{\gamma-1}\right)$, so $r_{x^2} - 1 \approx \exp\left(\gamma x^{2\gamma-2}\right) - 1 \approx \gamma x^{2\gamma-2}$. Also, if $d_{m_x} > 3^x$ then $m_x^{\gamma} > x$ and so $m_x > x^2$. Thus

$$\sum_{x=1}^{\infty} (r_{m_x} - 1) < \sum_{x=1}^{\infty} (r_{x^2} - 1) \approx \sum_{x=1}^{\infty} \gamma x^{2\gamma - 2} < \infty.$$

The following example shows what can go wrong when one has no control on the sequence (r_n) defined in the proof of Corollary 4.8.

Proposition 4.9. Let $(s_n)_{n=1}^{\infty}$ be any sequence of natural numbers converging to ∞ . Then there exists a sequence $(d_n)_{n=1}^{\infty}$ such that $1 \leq d_n \leq s_n \sqrt{n}$ for all n and $v(\alpha) = \sum_{n \in \alpha} d_n$ is not covering.

Proof. Let (m_i) be a rapidly increasing sequence of natural numbers. Set $d_n = 1$ for all n with $1 \le n \le \frac{m_1^2}{2}$, and

$$d_n = m_1 m_2 \dots m_t$$
, for $\frac{m_1^2}{2} + \frac{m_2^2}{4} + \dots \frac{m_t^2}{2^t} < n \le \frac{m_1^2}{2} + \frac{m_2^2}{4} + \dots + \frac{m_t^2}{2^t} + \frac{m_{t+1}^2}{2^{t+1}}$.

One may check that if (m_i) grows rapidly enough then $1 \le d_n \le s_n \sqrt{n}$ holds for all n.

Now define a set $A \subset \mathcal{F}$ as follows. For $t \in \mathbb{N}$, let

$$A_t = \left\{ B \subset \mathcal{F} \left(\left\{ \sum_{i=1}^{t-1} \frac{m_i^2}{2^i} + 1, \dots, \sum_{i=1}^t \frac{m_i^2}{2^i} \right\} \right) : \frac{m_t^2}{2^{t+1}} - \frac{tm_t}{2^{t/2+1}} < |B| < \frac{m_t^2}{2^{t+1}} + \frac{tm_t}{2^{t/2+1}} \right\}.$$

(Roughly, B consists of those subsets of $\{\sum_{i=1}^{t-1} \frac{m_i^2}{2^i} + 1, \dots, \sum_{i=1}^t \frac{m_i^2}{2^i}\}$ having cardinality within t standard deviations of expected were B chosen by coin tossing.)

The relative density z_t of A_t in $\mathcal{F}(\{\sum_{i=1}^{t-1} \frac{m_i^2}{2^i} + 1, \dots, \sum_{i=1}^t \frac{m_i^2}{2^i}\})$ increases to 1 fast enough (e.g., by the central limit theorem) to ensure that $\prod_{t=1}^{\infty} z_t > 0$. From this, we get that

$$A = \{ \alpha_1 \cup \alpha_2 \cup \dots \cup \alpha_n : n \in \mathbb{N}, \, \alpha_t \in A_t, \, 1 \le t \le n \}$$

satisfies $\overline{d}(A) > 0$.

Put $v(\alpha) = \sum_{n \in \alpha} d_n$ and let $k \in \mathbb{N}$. We claim that kv(A) - kv(A) is not syndetic; indeed does not have positive density. To see this, note that $\alpha \in A$ can be written $\alpha = \alpha_1 \cup \alpha_2 \cup \cdots \cup \alpha_N$, where $\alpha_t \in A_t$, $1 \le t \le N$. We then have

$$v(\alpha) = |\alpha_1| + m_1 |\alpha_2| + m_1 m_2 |\alpha_3| + \dots + m_1 m_2 \dots m_{N-1} |\alpha_N|,$$

with $|\alpha_t|$ confined to an interval of length $tm_t 2^{-t/2}$. It follows that for any $x \in kv(A) - kv(A)$

$$x \equiv x_1 + m_1 x_2 + m_1 m_2 x_3 + \dots + m_1 m_2 \dots m_{n-1} x_n \mod m_1 m_2 \dots m_n$$

where x_t is confined to an interval of length $2ktm_t2^{-t/2}$. It follows that, modulo $m_1m_2...m_n$, kv(A)-kv(A) hits at most $\prod_{t=1}^n 2ktm_t2^{-t/2}$ residue classes, and hence has density at most $(2k)^n n! 2^{-n(n+1)/4} \to 0$ as $n \to \infty$.

On the other hand, for somewhat slower growing sequences (d_n) , one may prove a positive result, irrespective of control on the sequence (r_n) defined in Corollary 4.8. We begin with the following concentration function estimate.

Lemma 4.10. There exist positive constants c, C, having the following properties. Suppose $N \in \mathbb{N}$ and $(d_n)_{n=1}^N$ is a sequence of integers with $d_1 = 1$ and $1 \le d_n \le \max\{1, c\sqrt{\frac{n}{\log n}}\}$ for $n \ge 2$. If $(X_n)_{n=1}^N$ are independent random variables with $\mathbb{P}(X_i = 0) = \frac{1}{2} = \mathbb{P}(X_i = d_i)$ then $\mathbb{P}(\sum_{n=1}^N X_n = k) \le C(\sum_{n=1}^N d_n^2)^{-1/2}$ for all k.

Proof. Let $c=\frac{1}{11}$ and C=3; we have made very little attempt to make these constants optimal. We may assume without loss of generality that $(d_n)_{n=1}^N$ is non-decreasing. If $d_1=d_2=\cdots=d_N=1$ then $\mathbb{P}(\sum_{n=1}^N X_n=k)\leq \binom{n}{\lfloor \frac{n}{2}\rfloor}2^{-n}\leq \frac{C}{\sqrt{N}}$ for all k; we may therefore assume that $d_N\geq 2$. In particular, this implies that $d_N\leq c\sqrt{\frac{N}{\log N}}$.

Write $X = \sum_{n=1}^{N} X_n$. Then for $\omega \in \mathbb{R}$ and $k \in \mathbb{Z}$,

$$\mathbb{E}(e^{2\pi i\omega(X-k)}) = e^{-2\pi i\omega k} \prod_{n=1}^{N} \mathbb{E}(e^{2\pi i\omega X_n}) = e^{-2\pi i\omega k} \prod_{n=1}^{N} \cos(\pi d_n \omega) e^{\pi i\omega d_n}.$$

Integrating with respect to ω ,

$$\mathbb{E}(1_{X=k}) = \mathbb{E}\left(\int_0^1 e^{2\pi i\omega(X-k)} d\omega\right) = \int_0^1 \mathbb{E}(e^{2\pi i\omega(X-k)}) d\omega.$$

It follows that

$$\mathbb{P}(X=k) \le \int_0^1 \left| \mathbb{E}(e^{2\pi i\omega(X-k)}) \right| d\omega = \int_0^1 \prod_{n=1}^N |\cos(\pi d_n \omega)| d\omega.$$

One has $|\cos x| \le e^{-x^2/2}$ for $|x| \le .56\pi$. If $1 \le n \le N$, choose $t_n \in \mathbb{Z}$ and $\{d_n\omega\} \in [-.56, .56]$ such that $d_n\omega = t_n + \{d_n\omega\}$. (This representation may not be unique, which will be important later.) Then

$$|\cos(\pi d_n \omega)| = |\cos \pi \{d_n \omega\}| \le e^{-\frac{\pi^2}{2} \{d_n \omega\}^2} = e^{-\frac{\pi^2}{2} (d_n \omega - t_n)^2}$$

Thus

$$\mathbb{P}(X=k) \le \int_0^1 \exp\left(-\frac{\pi^2}{2} \sum_{n=1}^N (d_n \omega - t_n)^2\right) d\omega. \tag{2}$$

Write $V = \sum_{n=1}^{N} d_n^2$, and more generally $V_S = \sum_{n \in S} d_n^2$ when $S \subset \{1, \dots, N\}$. Since $d_N \leq c \sqrt{\frac{N}{\log N}}$,

$$V^{1/2} = \left(\sum_{n=1}^{N} d_n^2\right)^{1/2} \le (Nd_N^2)^{1/2} \le c \frac{N}{(\log N)^{1/2}} \le N.$$
 (3)

According to (2), it suffices to show that

$$V^{1/2} \int_0^1 \exp\left(-\frac{\pi^2}{2} \sum_{n=1}^N (d_n \omega - t_n)^2\right) d\omega \le C = 3.$$
 (4)

By (3), the contribution in the left hand side of (4) from those ω for which there exists a choice (t_n) making the integrand less than $\frac{1}{N}$ (i.e., for which there are t_n with $\frac{\pi^2}{2} \sum_{n=1}^{N} (d_n \omega - t_n)^2 > \log N$) is at most $N \cdot \frac{1}{N} = 1$.

For a fixed choice (t_n) , the function $g(\omega) = \frac{\pi^2}{2} \sum_{n=1}^{N} (d_n \omega - t_n)^2$ is quadratic in ω and can be written in the form $g(\omega) = A(\omega - \omega_0)^2 + B$, where $A = \frac{\pi^2}{2} \sum_{n=1}^{N} d_n^2 = \frac{\pi^2}{2} V$ and B is the minimum value of g. It follows that the contribution to the left hand side of (4) from ω giving rise to this choice of (t_n) is at most

$$V^{1/2} \int_{-\infty}^{\infty} \exp\left(-A(\omega - \omega_0)^2 - B\right) d\omega = V^{1/2} \sqrt{\frac{\pi}{A}} e^{-B} = (\pi/2)^{-1/2} e^{-B}.$$

Therefore, it suffices to show that $\sum_{(t_n)} (\pi/2)^{-1/2} e^{-B} < 2$, where the sum is over those choices (those we choose to make in the remainder of the proof) of the sequence (t_n) for which $B \leq \log N$. We will in fact show that $\sum_{(t_n)} e^{-B} < 2.1$.

Setting $g'(\omega) = 0$ and solving for ω , we get $\omega_0 \sum_{n=1}^N d_n^2 = \sum_{n=1}^N d_n t_n$. Thus

$$B = g(\omega_0) = \frac{\pi^2}{2} \sum_n \left(d_n \frac{\sum_j d_j t_j}{\sum_j d_j^2} - t_n \right)^2$$

$$= \frac{\pi^2}{2} \left(\sum_j d_j t_j \right)^2 - 2 \sum_j d_n t_n \frac{\sum_j d_j t_j}{\sum_j d_j^2} + \sum_j t_n^2 \right)$$

$$= \frac{\pi^2}{2} \left(\frac{(\sum_j d_j t_j)^2}{\sum_j d_j^2} - 2 \frac{(\sum_j d_n t_n)^2}{\sum_j d_j^2} + \frac{\sum_j t_n^2 \sum_j d_j^2}{\sum_j d_j^2} \right)$$

$$= \frac{\pi^2}{2} V^{-1} \left((\sum_j t_n^2) (\sum_j d_n^2) - (\sum_j d_n t_n)^2 \right)$$

$$= \frac{\pi^2}{2} V^{-1} \left(\sum_{i < j} (d_i^2 t_j^2 + d_j^2 t_i^2) + \sum_j d_n^2 t_n^2 - \sum_{i, j} d_i t_i d_j t_j \right)$$

$$= \frac{\pi^2}{2} V^{-1} \sum_{i < j} (d_i^2 t_j^2 + d_j^2 t_i^2 - 2 d_i d_j t_i t_j)$$

$$= \frac{\pi^2}{2} V^{-1} \sum_{i < j} (d_i t_j - d_j t_i)^2.$$
(5)

We now discuss the choice of (t_n) . Recall, we only need consider those ω for which all legal choices (t_n) give $g(\omega) \leq \log N$. For such ω , initially we will choose t_n such that $\{d_n\omega\} \in [-.5, .5]$ (we will change some of the t_n in a moment). Define an equivalence relation \sim on $\{1, 2, \ldots, N\}$ by $i \sim j$ if and only if $\frac{t_i}{d_i} = \frac{t_j}{d_j}$. Let S be a largest equivalence class of \sim , and choose relatively prime a, d, with $\frac{a}{d}$ equal to the common value $\frac{t_i}{d_i}$, $i \in S$. Note in particular that $d \mid d_i$ for all $i \in S$. Since each i has at least N - |S| values of j for which $i \not\sim j$,

$$\sum_{i < j} (d_i t_j - d_j t_i)^2 \ge \frac{1}{2} N(N - |S|).$$

But $B \leq g(\omega) \leq \log N$, so by (5) and (3) one has

$$\sum_{i < j} (d_i t_j - d_j t_i)^2 \le \frac{2}{\pi^2} V \log N \le \frac{2c^2}{\pi^2} N^2.$$
 (6)

Since c < 1 we deduce that

$$\frac{1}{2}N(N-|S|) \le \frac{2c^2}{\pi^2}N^2 < \frac{1}{4}N^2,$$

and so $|S| > \frac{1}{2}N$. Thus the largest equivalence class S is in fact unique. We shall now strengthen this bound on S by showing that $S^c := \{1, \ldots, N\} \setminus S$ is rather small.

If $i \in S$ then $(d_i t_j - d_j t_i)^2$ is divisible by $(\frac{d_i}{d})^2$, so by considering pairs i, j, exactly one of which is in S, one gets

$$\sum_{i < j} (d_i t_j - d_j t_i)^2 \ge |S^c| \frac{1}{d^2} V_S. \tag{7}$$

Combining this with (6), $V_{S^c} \leq |S^c| d_N^2$, and $V_S \geq |S| d^2 \geq \frac{1}{2} d^2 N$ we obtain

$$\begin{split} \frac{\pi^2}{2} |S^c| \frac{1}{d^2} V_S &\leq V \log N \\ &\leq V_S \log N + |S^c| d_N^2 \log N \\ &\leq V_S \log N + c^2 |S^c| N \\ &= V_S \log N + 2c^2 d^{-2} |S^c| (\frac{1}{2} d^2 N) \\ &\leq V_S \log N + 2c^2 d^{-2} |S^c| V_S. \end{split}$$

Canceling V_S and isolating $|S^c|$, we get

$$|S^c| \le \frac{d^2 \log N}{\frac{\pi^2}{2} - 2c^2} < \frac{1}{4}d^2 \log N.$$
 (8)

Our next task is to estimate the closeness of ω to $\frac{a}{d}$. We have

$$\frac{1}{2}N(\omega - \frac{a}{d})^{2} \le (\omega - \frac{a}{d})^{2} \sum_{n \in S} d_{n}^{2} = \sum_{n \in S} (\omega - \frac{t_{n}}{d_{n}})^{2} d_{n}^{2}$$

$$\le \sum_{n=1}^{N} (d_{n}\omega - t_{n})^{2} = \frac{2}{\pi^{2}} g(\omega) \le \frac{2}{\pi^{2}} \log N \le \frac{2c^{2}}{\pi^{2} d_{N}^{2}} N.$$

Thus $|\omega - \frac{a}{d}| \leq \frac{2c}{\pi d_N}$, and so $|d_n\omega - d_n\frac{a}{d}| \leq \frac{2c}{\pi} < .06$ for all $n \in S^c$. What this means is that if we rechoose (for all $n \in S^c$) t_n such that $d_n\frac{a}{d} - t_n \in (-.5, .5]$, the sequence (t_n) will still be legal for ω , i.e., $|d_n\omega - t_n| \leq .56$. By choosing in this fashion, we ensure that for each fixed d, at most d+1 sequences (t_n) contribute, there being d+1 choices for a, while a and d determine (t_n) uniquely.

Now by (8), $|S^c| \leq \frac{1}{4}d^2 \log N$, so $V_{S^c} \leq |S^c| d_N^2 \leq \frac{1}{4}c^2 d^2 N$. But $V_S \geq \frac{1}{2}d^2 N$, so $V_S \geq \frac{1}{2}V$. Therefore, using (7),

$$\sum_{i \le j} (d_i t_j - d_j t_i)^2 \ge |S^c| \frac{1}{d^2} V_S \ge |S^c| \frac{1}{2d^2} V. \tag{9}$$

Let $n \in S$. If d > 1 then $d \le d_n \le c\sqrt{\frac{n}{\log n}}$, which implies that $n \ge \frac{d^2 \log n}{c^2} > \frac{d^2 \log d}{c^2} + 1$. It follows that all integers $1, \ldots, \lceil \frac{d^2 \log d}{c^2} \rceil$ lie in S^c , and so $|S^c| \ge \frac{d^2 \log d}{c^2}$. As this obviously holds for d = 1 as well, (5) and (9) imply that

$$B = \frac{\pi^2}{2} V^{-1} \sum_{i < j} (d_i t_j - d_j t_i)^2 \ge \frac{\pi^2}{4d^2} |S^c| \ge \frac{\pi^2}{4c^2} \log d \ge 100 \log d.$$

Thus

$$\sum_{(t_n)} e^{-B} \le \sum_{d=1}^{\infty} (d+1)e^{-100\log d} = \sum_{d=1}^{\infty} \frac{d+1}{d^{100}} < 2.1$$

as required.

Theorem 4.11. There exists an absolute constant c > 0 such that if $1 \le d_n \le c\sqrt{\frac{n}{\log n}}$ for all large enough n then for every $A \in \mathcal{F}$ with $\overline{d}(A) > 0$, $d^*(v(A)) > 0$, where $v(\alpha) = \sum_{n \in \alpha} d_n$. In particular v is 1-covering.

Proof. We may assume without loss of generality that the inequality in question holds for all n, since the behavior of $(d_n)_{n=1}^N$ can affect $d^*(v(A))$ by at most a factor of 2^{-N} .

Let $(X_n)_{n=1}^{\infty}$ be independent random variables with $\mathbb{P}(X_i = 0) = \frac{1}{2} = \mathbb{P}(X_i = d_i)$. Let $X^{(n)} = \sum_{i=1}^{n} X_i$, and let s_n be the standard deviation of $X^{(n)}$, so that $s_n^2 = \operatorname{Var}(X^{(n)}) = \frac{1}{4} \sum_{i=1}^{n} d_i^2$. Let c and C be as guaranteed by Lemma 4.10. Let $\varepsilon = \overline{d}(A) > 0$ and choose a large n such that $\frac{|A \cap \mathcal{F}(\{1,2,\dots,n\})|}{2^n} > \frac{\varepsilon}{2}$. By Chebychev's inequality

$$\mathbb{P}(|X^{(n)} - \mathbb{E}X^{(n)}| > ts_n) \le \frac{1}{t^2}.$$

Hence, taking $t = 2/\sqrt{\varepsilon}$, we may choose an interval I_n of length $4s_n/\sqrt{\varepsilon}$ such that $\mathbb{P}(X^{(n)} \in I_n) > 1 - \frac{\varepsilon}{4}$. From this is follows that $B := \{\alpha \in \mathcal{F}(\{1, 2, \dots, n\}) : v(\alpha) \in I\}$ satisfies $|B| \geq 2^n (1 - \frac{\varepsilon}{4})$, hence $|B \cap A| \geq 2^n \frac{\varepsilon}{4}$.

According to Lemma 4.10, the number of distinct sets $\alpha \subset \{1, 2, \dots, n\}$ such that $v(\alpha) = \sum_{i \in \alpha} d_i = T$ is at most $\frac{2^n C}{2s_n}$. It follows that $v(B \cap A) \geq \frac{2^n \varepsilon/4}{2^n C/2s_n} = \frac{\varepsilon}{2C} s_n$. From this we get $\frac{|v(A) \cap I_n|}{|I_n|} \geq \frac{\varepsilon^{3/2}}{4C}$. Letting $n \to \infty$, one deduces that $d^*(v(A)) \geq \frac{\varepsilon^{3/2}}{4C} > 0$. \square

We thus come to the main result of the paper.

Corollary 4.12. Let $(c_{ij})_{i>j}$ be an infinite, lower triangular, natural number valued matrix. Suppose that for every $j \in \mathbb{N}$, $c_{nj} = o(\sqrt{\frac{n}{\log n}})$ as $n \to \infty$. Then $v(\alpha) = \sum_{i,j\in\mathbb{Z}, i>j} c_{ij}$ is covering. In particular, $v(\mathcal{F})$ is a set of measurable recurrence, hence density intersective.

Proof. Let $\alpha \in \mathcal{F}$. Then $D_{\alpha}v(\beta) = \sum_{n \in \beta} \left(\sum_{j \in \alpha} c_{nj} \right)$. For n large enough, one has $1 \leq \sum_{j \in \alpha} c_{nj} \leq c \sqrt{\frac{n}{\log n}}$, so by Theorem 4.11 $D_{\alpha}v$ is covering. The final claim follows from Corollary 3.7.

Comparing Proposition 4.9 with Theorem 4.11, one is lead to the following.

Question. What is the precise rate of growth necessary to ensure that $v(\alpha) = \sum_{n \in \alpha} d_n$ is covering?

5 p-covering

A more general form of Theorem 3.6 will be used in this section for an application that is modestly less straightforward than Corollary 4.6.

Definition. Let $p \in \delta \mathcal{F}$ be idempotent and let $v : \mathcal{F} \to G$ be \mathcal{F} -linear. If there exists $k \in \mathbb{N}$ such that for every $A \in p$, the set kv(A) - kv(A) is syndetic, then we shall say that v is p-covering. If $v : \mathcal{F} \to G$ is \mathcal{F} -quadratic then we shall say v is p-covering if $D_{\alpha}v$ is p-covering for all $\alpha \in \mathcal{F}$.

Theorem 5.1. Let \mathcal{H} be a separable Hilbert space and let G be a unitary action on \mathcal{H} . Suppose $p \in \delta \mathcal{F}$ is an idempotent and let $v \colon \mathcal{F} \to G$ be \mathcal{F} -linear or \mathcal{F} -quadratic and p-covering. For $f \in \mathcal{H}$ write Pf = p- $\lim_{\alpha} T_{v(\alpha)}f$, where the limit is taken in the weak topology. Then P is the orthogonal projection onto \mathcal{K}_G .

Proof. For the linear case, note that all that is used of the premises p essential, v covering in the proof of Theorem 3.4 is that v is p-covering. The quadratic case then follows from the linear case exactly as in the proof of Theorem 3.6.

Lemma 5.2. There exists an (essential) idempotent ultrafilter $p \in \delta f$ having the property that for every $A \in p$ and every $n \in \mathbb{N}$, there exists $\alpha \in \mathcal{F}_n$ and $\varepsilon > 0$ such that for all $m_0 \in \mathbb{N}$ there is some $m > m_0$ with $\overline{d}(\alpha^{-1}A \cap \mathcal{F}_m) > \varepsilon 2^{-m}$.

Proof. Let $\mathcal{L} = \{A \subset \mathcal{F} : \lim_{n \to \infty} 2^n \underline{d}(A \cap \mathcal{F}_n) = 1\}$. Then \mathcal{L} is a filter and is thus contained in some ultrafilter q that is plainly a member of $\delta \mathcal{F}$. Note that for any $B \in q$, $\limsup_m 2^m \overline{d}(B \cap \mathcal{F}_m) > 0$, as otherwise $B^c \in \mathcal{L} \subset q$, a contradiction. Next pick an idempotent p of the form p = r * q, where $r \in \delta \mathcal{F}$. If now $A \in p$ then $\{\alpha : \alpha^{-1}A \in q\} \in r$, so that for some $\alpha \in \mathcal{F}_n$, $\alpha^{-1}A \in q$. In particular, $\limsup_m 2^m \overline{d}(\alpha^{-1}A \cap \mathcal{F}_m) > 0$, as required.

Lemma 5.3. Let $k \in \mathbb{N}$, $k \geq 2$, and suppose d_n is a sequence of positive integers such that $\sum_{n} \left| \frac{d_{n+1}}{d_n} - k \right| < \infty$. Define $v \colon \mathcal{F} \to \mathbb{Z}$ by $v(\alpha) = \sum_{n \in \alpha} d_n$. For any $\varepsilon > 0$ there exists n_0 such that for all $m \geq n \geq n_0$,

$$|(k-1)v(\mathcal{F}_{n-1}) \cap \Phi_m| \ge (1-\varepsilon)k^{m-n},$$

where $\Phi_m = \{1, 2, \dots, d_m - 1\}.$

Proof. First we note that the convergence of $\sum (\frac{d_{n+1}}{d_n} - k)$ is equivalent to the convergence of $\sum \log(d_{n+1}/kd_n)$, which in turn is equivalent to the convergence of d_n/k^n to some limit c > 0. Requiring this sum to be absolutely convergent is slightly stronger, but will hold if d_n/k^n converges rapidly enough to c. As k > 1 and the conclusion is unaffected by altering the first few terms d_n , we may assume without loss of generality that d_n is strictly increasing.

Let $s_m = (k-1) \sum_{i=1}^{m-1} d_i$. We aim to show that s_m is close to d_m . More specifically, define $\delta = \delta(m)$ to be the largest integer < m such that

$$s_m \le d_m + d_{m-\delta(m)}. (10)$$

(We allow negative $\delta(m)$, although it is clear that $\delta(m) > 0$ for large m.) We aim to prove

$$\sum_{m=1}^{\infty} k^{-\delta(m)} < \infty.$$

As $s_m - d_m = (kd_{m-1} - d_m) + (s_{m-1} - d_{m-1})$ we have $|s_m - d_m| \le \sum_{i=1}^m |kd_{i-1} - d_i|$, where for convenience we define $d_0 = 0$. Then

$$\sum_{m=1}^{\infty} \frac{|s_m - d_m|}{k^m} \le \sum_{i=1}^{\infty} \frac{|kd_{i-1} - d_i|}{k^i} \sum_{m > i} \frac{1}{k^{m-i}} \le C \sum_{i=2}^{\infty} \left| \frac{d_i}{kd_{i-1}} - 1 \right| + O(1) < \infty,$$

where we have used the fact that $d_m \sim ck^m$. By definition of $\delta(m)$, $|s_m - d_m| \ge d_{m-1-\delta(m)}$ and hence $\sum \frac{d_{m-1-\delta(m)}}{k^m} < \infty$. As $d_m \sim ck^m$, $\sum_m k^{-\delta(m)} < \infty$.

Choose n_0 sufficiently large so that $\sum_{m\geq n_0} k^{-\delta(m)} < \varepsilon/2$ and fix $n\geq n_0$. Let N_m be the number of elements of $(k-1)v(\mathcal{F}_{n-1})\cap\{1,2,\ldots,d_m-1\}$. Clearly $N_m\leq k^{m-n}$. Indeed, all elements of $(k-1)v(\mathcal{F}_{n-1})\cap\{1,2,\ldots,d_m-1\}$ are of the form $\sum_{i=n}^{m-1} c_i d_i$ with $c_i\in\{0,\ldots,k-1\}$. On the other hand we shall show that

$$N_{m+1} \ge kN_m - (k-1)N_{m-\delta(m)} - N_{m+1-\delta(m+1)}. (11)$$

To see this, note that the sums that are counted to get N_{m+1} include the sums counted to get N_m , plus $0,\ldots,k-1$ times d_m , provided these are distinct and less than d_{m+1} . Repeats lie in k-1 overlap intervals involving a previous sum. However, all such sums must be of the form $\sum_{i\leq m}c_id_i$ where $\sum_{i< m}c_id_i\leq s_m-d_m< d_{m-\delta(m)}$. Thus there are at most $N_{m-\delta(m)}$ repeated numbers in each overlap interval. Similarly there are at most $N_{m+1-\delta(m+1)}$ sums that are at least d_{m+1} , as all such sums can be written as $\sum_{i=n}^m (k-1)d_i - \sum_{i=n}^m c_id_i$ with $\sum_{i=1}^m c_id_i\leq s_{m+1}-d_{m+1}< d_{m+1-\delta(m+1)}$. Let $x_m=N_m/k^{m-n}$. Dividing (11) by k^{m+1} gives

$$x_{m+1} \ge x_m - (\frac{k-1}{k}x_{m-\delta(m)})k^{-\delta(m)} - (x_{m+1-\delta(m+1)})k^{-\delta(m+1)}.$$

As $N_m \le k^{m-n}$, we have $x_m \le 1$ for all $m \ge n$. Also $N_n = 1$, so $x_n = 1$. Hence for all $m \ge n$,

$$x_m \ge 1 - 2\sum_{t=n}^m k^{-\delta(t)} \ge 1 - \varepsilon.$$

Thus $|(k-1)v(\mathcal{F}_{n-1}) \cap \Phi_m| = N_m \ge (1-\varepsilon)k^{m-n}$ for all $m \ge n \ge n_0$.

Theorem 5.4. Let p be as in Lemma 5.2 and let c_{ij} , i > j, be positive integers such that for each j, $\sum_{i} \left| \frac{c_{(i+1)j}}{c_{ij}} - j \right|$ converges. Let $u: \mathcal{F} \to \mathbb{Z}$ be defined by $u(\alpha) = \sum_{i,j \in \alpha, j < i} c_{ij}$. Then u is p-covering.

We note that, in particular, any example for which for every j there is an $\epsilon > 0$ with $c_{nj} = j^n(1 + O(1/n^{1+\epsilon}))$ as $n \to \infty$ satisfies the conditions of the theorem.

Proof. Let $\alpha \in \mathcal{F}$ and put $k = \max \alpha$. Then $v(\beta) = D_{\alpha}u(\beta) = \sum_{n \in \beta} d_n$, where $d_n = \sum_{j \in \alpha} c_{nj}$. As c_{nj} grows as j^n for each fixed j, it is clear that $d_n/c_{nk} \to 1$ exponentially fast in n. Hence d_n satisfies the conditions of Lemma 5.3. We will show that v is p-covering. Specifically, we will show that for any $A \in p$, (k-1)v(A) - (k-1)v(A) is syndetic.

Define $\Phi_n = \{1, 2, \dots, d_n - 1\}$. Let $A \in p$. Choose by the conclusion of Lemma 5.2 $\alpha \in \mathcal{F}$ and $\varepsilon > 0$ having the property that for every m_0 , there is $m > m_0$ with $\overline{d}(\alpha^{-1}A \cap \mathcal{F}_m) > \varepsilon 2^{-m}$. Pick some j_0 with $2^{-j_0} < \varepsilon$. Let $\gamma = \frac{1}{2}k^{-j_0}$. By Lemma 5.3, there exists n_0 such that for all $m \geq n \geq n_0$, $|(k-1)v(\mathcal{F}_{n-1}) \cap \Phi_m| > (1-\gamma)k^{m-n}$. We may also assume without loss of generality that d_n is strictly increasing for all $n \geq n_0$. Choose $m_0 > n_0$ with $\overline{d}(\alpha^{-1}A \cap \mathcal{F}_{m_0}) > \varepsilon 2^{-m_0}$.

For the remainder of the proof, we view, e.g., \mathcal{F}_m as a subset of $\bigoplus_{i=m+1}^{\infty} \mathbb{Z}_k$. Also we use the abbreviation $\mathcal{F}_{m_0}^m = \mathcal{F}(\{m_0 + 1, \dots, m\})$. Pick $m > m_0$ with

$$\left| (k-1)v(\mathcal{F}_{m_0}^m) \right| \ge \left| (k-1)v(\mathcal{F}_{m_0}) \cap \Phi_{m+1} \right| > (1-\gamma)k^{m-m_0} = k^{m-m_0} - \frac{1}{2}k^{m-m_0-j_0}$$

and

$$|\alpha^{-1}A \cap \mathcal{F}_{m_0}^m| > \varepsilon 2^{m-m_0} > 2^{m-m_0-j_0}$$

By Theorem 4.2, one has

$$|(k-1)(\alpha^{-1}A)\cap (k-1)\mathcal{F}_{m_0}^m| > k^{m-m_0-j_0}.$$

Since $|(k-1)\mathcal{F}_{m_0}^m| = k^{m-m_0}$, one has

$$\left| (k-1)\mathcal{F}_{m_0}^m \setminus (k-1)(\alpha^{-1}A) \right| < k^{m-m_0} - k^{m-m_0-j_0}.$$

Applying v,

$$|v((k-1)\mathcal{F}_{m_0}^m \setminus (k-1)(\alpha^{-1}A))| < k^{m-m_0} - k^{m-m_0-j_0}.$$

This implies

$$|v((k-1)\mathcal{F}_{m_0}^m)| - |v((k-1)(\alpha^{-1}A) \cap (k-1)\mathcal{F}_{m_0}^m)| < k^{m-m_0} - k^{m-m_0-j_0}.$$

We may conclude that $|v((k-1)(\alpha^{-1}A) \cap (k-1)\mathcal{F}_{m_0}^m)| > \frac{1}{2}k^{m-m_0-j_0}$. Now, for large m, $(k-1)\sum_{i\leq m}d_i \leq d_{m+2}$, so $|(k-1)v(\alpha^{-1}A) \cap \Phi_{m+2}| > \frac{1}{2}k^{m-m_0-j_0}$. Since m is arbitrarily large and $|\Phi_{m+2}| = d_{m+2} \sim ck^{m+2}$ for some c > 0,

$$\overline{d}_{\Phi}((k-1)v(\alpha^{-1}A)) \ge \frac{1}{2c}k^{-m_0-j_0-2}.$$

In particular, $(k-1)v(\alpha^{-1}A) - (k-1)v(\alpha^{-1}A)$ is syndetic. But

$$((k-1)v(\alpha^{-1}A) - (k-1)v(\alpha^{-1}A)) \subset ((k-1)v(A) - (k-1)v(A)),$$

which completes the proof.

As in Corollary 3.7, Theorems 5.1 and 5.4 imply the following.

Corollary 5.5. Let (X, \mathcal{A}, μ, T) be invertible measure preserving and let $\mu(A) > 0$. If p is as in Lemma 5.2, $\epsilon > 0$ and $u(\alpha) = \sum_{i,j \in \alpha, j < i} c_{ij}$ where $c_{nj} = j^n(1 + O(1/n^{1+\epsilon}))$ for each fixed j, then p- $\lim_{\alpha} \mu(A \cap T_{v(\alpha)}A) \ge \mu(A)^2$. In particular, $u(\mathcal{F})$ is a set of measurable recurrence, hence density intersective.

Question. Let $(d_n)_{n=1}^{\infty}$ be a sequence of natural numbers and assume there is a k > 0 such that $d_{n+1} \leq k d_n$ for all $n \in \mathbb{N}$. Must $v(\alpha) = \sum_{n \in \alpha} d_n$ be covering? If not, must v be p-covering for p as in Lemma 5.2?

References

- [B] V. Bergelson, Minimal idempotents and ergodic Ramsey theory, *Topics in dynamics and ergodic theory*, London Math. Soc. Lecture Note Ser., **310** (2003), 8–39.
- [BBH] V. Bergelson, A. Blass and N. Hindman, Partition theorems for spaces of variable words, *Proc. London Math. Soc.* **68** (1994), 449–476.
- [BFM] V. Bergelson, H. Furstenberg and R. McCutcheon, IP-sets and polynomial recurrence, *Ergodic Theory Dynam. Systems* **16** (1996), 963–974.
- [BHåM] V. Bergelson, I.J. Håland-Knutson and R. McCutcheon, IP-systems, generalized polynomials and recurrence, *Ergodic Theory Dynam. Systems* **26** (2006), 999–1019.

- [BHiM] V. Bergelson, N. Hindman and R. McCutcheon, Notions of size and combinatorial properties of quotient sets in semigroups, *Topology Proc.* **23** (1998), 23–60.
- [BL] V. Bergelson and A. Leibman, Set polynomials and a polynomial extension of the Hales-Jewett theorem, *Ann. Math.* **150** (1999).
- [BM1] V. Bergelson and R. McCutcheon, Central sets and a non-commutative Roth theorem, American J. Math. 129 (2007), 1227–1250.
- [BM2] V. Bergelson and R. McCutcheon, Idempotent ultrafilters, multiple weak mixing and Szemerédi's theorem for generalized polynomials, *J. Analyse Math.* To appear.
- [BKMP] G. Brown, M. Keane, W. Moran and C. Pierce, An inequality, with applications to Cantor measures and normal numbers, *Mathematika* **35** (1988), 87–94.
- [F] H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, *J. Analyse Math.* **31** (1977), 204–256.
- [HM] N. Hindman and R. McCutcheon, VIP systems in partial semigroups, *Discrete Math.* **240** (2001), 45–70.
- [Ma] G. Mackey, Ergodic transformation groups with a pure point spectrum, *Illinois J. Math.* 8 (1964), 593–600.
- [Mc1] R. McCutcheon, Elemental methods in ergodic Ramsey theory, Lecture Notes in Mathematics 722, Springer, 1999.
- [Mc2] R. McCutcheon, An infinitary polynomial van der Waerden theorem, J. Combin. Theory Ser. A 86 (1999), 214–231.
- [Mc3] R. McCutcheon, FVIP systems and multiple recurrence, *Israel J. Math.* **146** (2005), 157–188.
- [S] A. Sárközy, On difference sets of sequences of integers. III. Acta Math. Acad. Sci. Hungar. 31 (1978), 355–386.