

Department of Mathematical Sciences PhD Qualifying Exam

	Name:			
Examination:	Real Variables I	& II		
Date of Exam:	01/09/2023	Duration:	180 Minutes	
No. pages: 12			No. problems:	8
		Instructions:		

This exam consists of 8 problems, grouped by semester: Problems 1-4 cover material from the first semester, while Problems 5-8 are taken from the second semester. However, you may use techniques from either semester to work on the problems. When you are asked to prove a known result, make sure you provide the key arguments needed for the proof.

Please observe the following rules when choosing the problems you intend to work on:

- Solve at least two problems from among Problems 1-4.
- Solve at least two problems from among Problems 5-8.
- Solve a total of at least 5 problems. Hence, you may choose your 5th problem freely.
- Provide clear and concise justifications for your answers.

Note: Completeness of solutions is an important factor in earning a passing grade.

Write your solutions in the space provided. If you need more space, three additional, empty pages are attached at the end of the exam. You have 3 hours to finish your work. Good luck!

Please do not write below this line.

Problem	1	2	3	4	5	6	7	8	Total		Pass	Fail
Score										MS		
Complete										PhD		

Th.		1	4
Pra	h	am	
Pro	w		1.

Denote the Lebesgue measure on \mathbb{R} by m.

(a) State the Dominated Convergence Theorem of Lebesgue Integration.
(b) Let $(f)_n$ be a sequence of real-valued, measurable functions on $[0, 1]$ which converges pointwise a.e. to the real-valued function f . Prove: $\lim_n \int_{[0,1]} \frac{f_n}{1 + f_n^2} dm = \int_{[0,1]} \frac{f}{1 + f^2} dm < \infty$.

Problem 2	2:
-----------	----

(a) Suppose that $1 \le r \le p \le s \le \infty$. Prove: $L'(\mathbb{R}) \cap L^s(\mathbb{R}) \subset L^p(\mathbb{R})$.
(b) Prove or disprove: For every measurable set $S \subset \mathbb{R}$ and $1 \le p \le q \le \infty$, $L^q(S) \subset L^p(S)$.

	, s (, , , , , , , , , , , , , , , , ,	
Proble	om 3·	
(a	Let $f: [0,1] \to \mathbb{R}$ be an absolutely continuous function. Prove: f is Lipschitz continuous if and only if $f' \in L^{\infty}([0,1])$.	
(h	Let $f:[0,1] \to \mathbb{D}$ be an absolutely continuous increasing function	
(0	b) Let $f: [0,1] \to \mathbb{R}$ be an absolutely continuous, increasing function. Prove: If $E \subset [0,1]$ has (Lebesgue) measure 0, then so does $f(E)$.	
• •		
• •		
••		
• •		
• •		
• •		
••		
• •	•••••••••••••••••••••••••••••••••••••••	
• •		

Problem 4:

Denote the Lebesgue measure on \mathbb{R} by m.

Let (f_n) be a sequence of integrable functions on \mathbb{R} . Suppose there exist an integrable function g and a measurable function h such that

- (f_n) converges to g in mean, i.e. $\lim_n \int_{\mathbb{R}} |f_n g| \ dm = 0$,
- (f_n) converges to h in measure.

Prove: $g = h$ a.e. Note: One way to approach this problem is to use that convergence in mean and convergence in measure are related to pointwise a.e. convergence. How are they related? Prove this relationship or clearly cite the relevant theorems.

Pro	hl	em	5.
			◡.

(a) State the Uniform Boundedness Principle.
(b) Let \mathcal{X} be a Banach space and (T_n) a sequence of bounded linear operators on \mathcal{X} such that $\lim_{n \to \infty} \sum_{k=1}^{n} T_k(x)$
exists for every $x \in X$. Prove: The sequence (T_n) is bounded in the operator norm.

_	7 6 4 (2) 4 (2)
P	roblem 6:
-	Denote the Lebesgue measure on \mathbb{R} by m . Let f and g be functions in $L^1(\mathbb{R})$.
	(a) Prove: For a.e. $x \in \mathbb{R}$, the function h_x , defined for $y \in \mathbb{R}$ by $h_x(y) = f(x - y) g(y)$, belongs to $L^1(\mathbb{R})$
	(b) Prove: The function $(f * g)$, defined for a.e. $x \in \mathbb{R}$ by $(f * g)(x) = \int f(x - y) g(y) dm(y)$, belong
	to $L^1(\mathbb{R}).$
	(c) Prove: $ (f * g) _1 \le f _1 g _1$

Problem 7:	oblem 7:
------------	----------

(a) State the Closed Graph Theorem.		
(b) Let \mathcal{H} be a Hilbert space with inner product $\langle \cdot, \cdot \rangle$. Suppose $A, B : \mathcal{H} \to \mathcal{H}$ are linear operators such that for all $x, y \in \mathcal{H}$, $\langle x, Ay \rangle = \langle Bx, y \rangle$. Prove: A and B are bounded.		

Problem

 (a) Prove: If, for given x ∈ H, y ∈ Y is such that, among all vectors in Y, y has minimal distance then x - y ∈ Y[⊥]. (Note: Y[⊥] is the subspace of all u ∈ H such that ⟨u, v⟩ = 0 for all v ∈ Y.) 	
(b) Prove: If $P: \mathcal{H} \to \mathcal{H}$ is the orthogonal projection of \mathcal{H} onto \mathcal{Y} , then $P(I - P) = 0$. (Note: $I: \mathcal{H} \to \mathcal{H}$ denotes the identity operator with $I(x) = x$ for all $x \in \mathcal{H}$.)	
•••••••••••••••••••••••••••••	
	• • •

(Use this page if you need more space. Indicate the problem you are working on.)

(Use this page if you need more space. Indicate the problem you are working on.)

(Use this page if you need more space. Indicate the problem you are working on.)