

Department of Mathematical Sciences PhD Qualifying Exam

	Name:		
Examination:	Real Variables I &	₹ II	
Date of Exam:	08/15/2022	Duration:	180 Minutes
No. pages: 12			No. problems: 8
		T44:	

Instructions:

This exam consists of 8 problems, grouped by semester: Problems 1-4 cover material from the first semester, while Problems 5-8 are taken from the second semester. However, you may use techniques from either semester to work on the problems. When you are asked to prove a known result, make sure you provide the key arguments needed for the proof.

Please observe the following rules when choosing the problems you intend to work on:

- Solve at least two problems from among Problems 1-4.
- Solve at least two problems from among Problems 5-8.
- Solve a total of at least 5 problems. Hence, you may choose your 5th problem freely.
- Provide clear and concise justifications for your answers.

Note: Completeness of solutions is an important factor in earning a passing grade.

Write your solutions in the space provided. If you need more space, three additional, empty pages are attached at the end of the exam. You have 3 hours to finish your work. Good luck!

Please do not write below this line.

Problem	1	2	3	4	5	6	7	8	Total		Pass	Fail
Score										MS		
Complete										PhD		

Pro	hl	om	1	•
FIG		ell.		

Denote the Lebesgue measure on \mathbb{R} by m.

(a) State the Monotone Convergence Theorem and the Dominated Convergence Theorem of Lebesgue Integration. (b) Let f be a measurable function on [0,1]. Prove that the limit $\lim_{n} \int_{[0,1]} |f|^n dm$ either equals ∞ or $m(\{x \in [0,1] \mid |f(x)| = 1\}).$

D	L		2.
Pro	n	ıem	<i>.</i>

Denote the Lebesgue measure on \mathbb{R} by m.

(a) Suppose $E \subset \mathbb{R}$ is measurable such that $m(E) < \infty$. Prove that for a.e. $x \in \mathbb{R}$,

$$\lim_{\substack{h\to 0\\h>0}}\frac{m(E\cap [x,x+h))}{h}=\chi_E(x).$$

Note: χ_E denotes the characteristic function (or indicator function) of the set E.

(b) Suppose $g \in L^p(\mathbb{R})$ for some $1 \le p < \infty$. Prove that $\lim_{n \to \infty} \int_{[n,n+1]} g dm = 0$.
Is the result also true for $p = \infty$?

(b) Prove: There exists a subsequence (f_{n_k}) which converges pointwise a.e.	(a) Give an example which shows that the sequence (f_n) may not converge pointwise a.e.
	(o) Trove. There exists a subsequence (j_{n_k}) which converges pointwise a.e.
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	-	
	•	

Problem	4:
----------------	----

Denote the Lebesgue measure on \mathbb{R} by m.

- (a) State and prove Jensen's Inequality for integrable functions on [0, 1].
- (b) Let f be an integrable function on [0, 1] such that 1 + f > 0 a.e. and $\int_{[0,1]} f \, dm = 1$. Prove:

$$\int_{[0,1]} f \ln(1+f) \ dm \ge \ln 2.$$

Pro	hl	em	5:

(a) Let \mathcal{H} be a Hilbert space. Show that every nonempty, closed, convex set $\mathcal{C} \subseteq \mathcal{H}$ contains a unique element of smallest norm.
(b) Give an example which shows that the conclusion of part (a) fails if the set C is not convex.
(c) Give an example which shows that the conclusion of part (a) fails if the set C is not closed.

Pro	hl	ρm	6.
ΙIV	W	em	v.

Let X	be a	Banach	space.
---------	------	--------	--------

(a) Suppose ϕ is a bounded linear functional on X such that $\phi \neq 0$. Show that the kernel of ϕ , ker ϕ , i a proper, closed subspace of X . Conclude that ker ϕ is nowhere dense.				
(b) Let (ϕ_n) be a sequence of bounded linear functionals on X such that $\phi_n \neq 0$ for all $n \in \mathbb{N}$. Prove There exists $x \in X$ such that $\phi_n(x) \neq 0$ for all $n \in \mathbb{N}$.				

bblem 7 : Let $T: l^2 \to l^2$ be the bounded linear operator, given by $T((x_n)) = \left(\frac{1}{n}x_n\right)$ for $(x_n) \in l^2$.				
(a) Prove: T maps the closed unit ball in l^2 into a compact subset of l^2 .				
((b) Prove or disprove: T is open.			
•				
•				
•				
•				
•				
•				
•				
•				
•				
•				
•				
•				

Pro	hl	em	g.

- (a) State the Radon-Nikodym Theorem.
- (b) Let (X, \mathcal{A}) be a measurable space with σ -finite measures λ and μ . Suppose that $\lambda \ll \mu$ and $\mu \ll \lambda$. Prove: There exists a nonnegative, measurable function h on X such that
 - $\lambda(A) = \int_A h \, d\mu$ for all $A \in \mathcal{A}$, h > 0 μ -a.e. and λ -a.e., $\mu(A) = \int_A h^{-1} \, d\lambda$ for all $A \in \mathcal{A}$.

(Use this page if you need more space. Indicate the problem you are working on.)

(Use this page if you need more space. Indicate the problem you are working on.)

(Use this page if you need more space. Indicate the problem you are working on.)