Statistics Ph.D. Qualifying Exam: Part II January 12, 2008

Student Name:	

1. Answer 8 out of 12 problems. Mark the problems you selected in the following table.

Problem	1	2	3	4	5	6	7	8	9	10	11	12
Selected												
Scores												

- 2. Write your answer right after each problem selected, attach more pages if necessary. **Do not** write your answers on the back.
- 3. Assemble your work in right order and in the original problem order. (Including the ones that you do not select)

- 1. Let X_1, X_2, X_3, X_4 be a random sample of size 4 from the normal distribution with mean 0 and variance 1.
 - (a) Find the moment generating function of $W = X_1 \times X_2$.
 - (b) Find the moment generating function of $V = X_1 \times X_2 X_3 \times X_4$.
 - (c) Using the moment generating function or other method, prove that V in (b) has a double exponential distribution with p.d.f. $g(v) = \frac{1}{2}e^{|v|}, -\infty < v < \infty$.

Hint: You can use the following facts and other known distributional properties (such as the relation among normal, χ^2 , exponential, and gamma distributions) without proof: (1) Let $X \sim N(\mu, \sigma^2)$ with $E(X) = \mu$ and $Var(X) = \sigma^2$. Then the moment generating function of X is $e^{\mu t + \frac{1}{2}\sigma^2 t^2}$. (2) Let $Y \sim Gamma(\alpha, \beta)$ with $E(Y) = \alpha\beta$ and $Var(Y) = \alpha\beta^2$. Then the moment generating function of Y is $\left(\frac{1}{1-\beta t}\right)^{\alpha}$.

- 2. Let X_1, X_2, \dots, X_n be a random sample of size n from a Bernoulli distribution with probability of success θ , where $0 < \theta < 1$.
 - (a) Show that $T = \sum_{i=1}^{n} X_i$ is a complete sufficient statistics for θ .
 - (b) Find UMVUE of $\theta^r(1-\theta)^s$, where r and s are non-negative integers with $1 \le r+s < n$.
 - (c) Is there unbiased estimator of the odd ratio, $\frac{\theta}{1-\theta}$? Justify your answer.

3. Let Y_1, Y_2, \dots, Y_n be a random sample of size n satisfy

$$Y_i = \beta x_i + \epsilon_i, \quad i = 1, 2, ..., n,$$

where x_1, x_2, \dots, x_n are fixed known constants and $\epsilon_1, \epsilon_2, \dots, \epsilon_n$ are iid with $N(0, \sigma^2)$, σ^2 unknown.

We consider three estimators of β : MLE of β , $\hat{\beta}_{MLE}$, $\hat{\beta}_a = \frac{\sum_{i=1}^n Y_i}{\sum_{i=1}^n x_i}$, and $\hat{\beta}_b = \frac{\sum_{i=1}^n Y_i/x_i}{n}$.

- (a) Find the MLE of β , $\hat{\beta}_{MLE}$.
- (b) Prove the all three estimators of β are unbiased.
- (c) Compare these three estimators of β in terms of their variances.

- 4. Let $(X_1, Y_1) \dots, (X_n, Y_n)$ be a random sample of size n from a bivariate normal distribution with unknown parameters: means μ_1, μ_2 , variances σ_1^2 , σ_2^2 and correlation coefficient ρ .
 - (a) Describe the paired t test procedure for testing $H_0: \mu_1 = \mu_2$ vs. $H_1: \mu_1 \neq \mu_2$.
 - (b) Derive the likelihood ratio test for testing $H_0: \mu_1 = \mu_2$ vs. $H_1: \mu_1 \neq \mu_2$.
 - (c) Argue that the paired t test in (a) and the LRT in (b) are equivalent.

- 5. Let X_1, \ldots, X_m and Y_1, \ldots, Y_n be independent samples from independent Exponential distributions with means μ and $\lambda \mu$ respectively.
 - (a) Find the MLE of $P(X_1 > Y_1)$ and hence find the MLE of $P(X_{(1)} > Y_{(1)})$, where $X_{(1)} = \min(X_1, \dots, X_m)$ and $Y_{(1)} = \min(Y_1, \dots, Y_n)$.
 - (b) Find jointly sufficient statistics S for (λ, μ) .
 - (c) Prove or disprove that S jointly minimally sufficient for (λ, μ) .

6. Consider the linear model

$$Y = X\beta + \epsilon$$
,

where \boldsymbol{Y} is $(n \times 1)$, $\boldsymbol{\epsilon}$ is $(n \times 1)$, \boldsymbol{X} is $(n \times p)$, and where $\boldsymbol{\epsilon} \sim N(\boldsymbol{0}, \sigma^2 \boldsymbol{I})$.

(a) Let \mathbf{A} be a symmetric $n \times n$ matrix. Prove that under the null hypothesis H_0 : $\mathbf{\beta} = \mathbf{0}$,

$$rac{\mathbf{Y}'\mathbf{A}\mathbf{Y}}{\sigma^2}\sim\chi_p^2.$$

if and only if \mathbf{A} is an idempotent matrix such that $\operatorname{trace}(\mathbf{A}) = p$.

(b) Give a comprehensive explanation of how you the result of part a) can be used to develop tests of hypotheses in an analysis of variance.

- 7. Suppose that $X|n,\theta$ has a binomial distribution with parameter θ . Suppose we put independent prior distributions on n and θ , with n having Poisson(λ) prior and θ having a Beta(α,β) prior, where α and β are known hyperparameters.
 - (a) Prove that the posterior density of θ given X = x and n is Beta $(x + \alpha, n x + \beta)$.
 - (b) Prove that the posterior probability function of n+X given X=x and θ is Poisson $[(1-\theta)\lambda]$.
 - (c) Suppose $\alpha = \beta = 1$ and X = 10, explain in details how you can obtained 100 samples of n's from the **posterior distribution** of n given X = 10.

8. Let X and Y be random variables such that $Y|X=x\sim \mathrm{Poisson}(\lambda x),$ and X has density

$$f_X(x) = \frac{\theta^{\theta} x^{\theta - 1} e^{-\theta x}}{\Gamma(\theta)}, \quad x \ge 0.$$

- (a) Prove that
 - i. $E(Y) = \lambda$ and $Var(Y) = \lambda + \theta \lambda^2$.
 - ii. Y has density

$$f_Y(y;\lambda) = \frac{\Gamma(\theta+y)\lambda^y\theta^\theta}{\Gamma(\theta)y!(\theta+\lambda)^{\theta+y}}, \quad y=0,1,2,\dots$$

(b) Now suppose that Y_1, \ldots, Y_n are independent random variables from the distribution given above, with Y_i having mean λ_i , and $\log(\lambda_i) = \beta z_i$, where z_i 's are known covariates, $i = 1, \ldots, n$., and assume that $\theta = 1$. Write a Fisher scoring algorithm for computing the MLE of β , and discuss its properties.

- 9. Let $\{X_1,\ldots,X_n\}$ be a random sample from the normal distribution with mean μ_1 and variance σ_x^2 and $\{Y_1,\ldots,Y_m\}$ a random sample from the normal distribution with mean μ_2 and variance σ_y^2 . Assume that the X_i 's are independently distributed of the Y_j 's. Put $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i, \ S_x^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2, \ \bar{Y} = \frac{1}{m} \sum_{i=1}^m Y_i, \ S_y^2 = \frac{1}{m-1} \sum_{i=1}^m (Y_i \bar{Y})^2, \ \hat{\sigma}^2 = \frac{1}{n} S_x^2 + \frac{1}{m} S_y^2.$
 - (a) What are a and b if one approximates the sampling distribution of $\hat{\sigma}^2$ by $a\chi_b^2$, where χ_b^2 is a central Chi-square random variable with degrees of freedom b.
 - (b) Derive a (1α) % approximate confidence interval for $\mu_1 \mu_2$ by using the approximation in (a).

10. Let $\{X_1, \ldots, X_n\}$ be a random sample from the population with density $f(x; \theta_i, i = 1, 2)$, where $f(x; \theta_i, i = 1, 2)$ is given by:

$$f(x; \theta_i, i = 1, 2) = \frac{1}{\theta_2 - \theta_1} \text{ if } \theta_1 \le x \le \theta_2,$$

= 0 if for otherwise.

- (a) Show that the statistics $\{X_{(1)} = Min(X_1, \dots, X_n), X_{(n)} = Max(X_1, \dots, X_n)\}$ are sufficient and complete statistics for the parameters $\{\theta_i, i = 1, 2\}$.
- (b) Derive the UMVUE of $\theta_2 \theta_1$.

11. Let $\{X_1, \ldots, X_n\}$ be a random sample from the population with density $f(x; \theta, \mu_i, i = 1, 2) = \theta f_1(x; \mu_1) + (1 - \theta) f_2(x; \mu_2)$, where $f_i(x; \mu_i)$ is the density of the normal distribution with mean μ_i and variance 1, and $0 < \theta < 1$. Illustrate how to derive a procedure to compute the MLE (Maximum Likelihood Estimator) of $\{\theta, \mu_i, i = 1, 2\}$ by using the EM-algorithm.

- 12. Let $\{X_1, \ldots, X_m\}$ be a random sample from the normal population with mean μ_1 and variance σ_1^2 . Let $\{Y_1, \ldots, Y_n\}$ be a random sample from the normal population with mean μ_2 and variance σ_2^2 independently of $\{X_1, \ldots, X_m\}$.
 - (a) Derive the size α Likelihood Ratio test for testing $H_0: \sigma_1^2 = \sigma_2^2$ vs $H_1: \sigma_1^2 \neq \sigma_2^2$.
 - (b) Derive the power function of your test.
 - (c) Derive a 1α % confidence interval for $\theta = \sigma_1^2/\sigma_2^2$. If you use this confidence interval to test the above hypothesis H_0 , how is this compared with the procedure of (a)?