Statistics Ph.D. Qualifying Exam: Part I

January 5, 2008

Student Name:	

1. Answer 8 out of 12 problems. Mark the problems you selected in the following table.

Problem	1	2	3	4	5	6	7	8	9	10	11	12
Selected												
Scores												

- 2. Write your answer right after each problem selected, attach more pages if necessary. **Do not** write your answers on the back.
- 3. Assemble your work in right order and in the original problem order. (Including the ones that you do not select)

- 1. Let $f(x,y)=c, x^2 \le y \le 1, 0 \le x \le 1$, be the joint p.d.f. of X and Y, where c is a constant to be determined.
 - (a) Find c.
 - (b) Find $P(X \leq Y)$.
 - (c) Find the p.d.f. of $Z = X^2$.

- 2. Let μ_X and σ_X be the mean and standard deviation of a random variable X.
 - (a) State and prove Chebyshev's inequality.
 - (b) Compare the bound from Chebyshev's inequality for k=2 by calculating

$$P(|X - \mu_X| \ge k\sigma_X)$$

for $X \sim U(0,1)$, and $X \sim Exp(1)$, an exponential distribution with mean 1.

3. Let X, Y be two random variables with a joint pdf

$$f(x,y) = \frac{\Gamma(a+b+c)}{\Gamma(a)\Gamma(b)\Gamma(c)} x^{a-1} y^{b-1} (1-x-y)^{c-1},$$

where 0 < x < 1; 0 < y < 1; 0 < x + y < 1, a,b,c are positive constants and $\Gamma(\alpha) = \int_0^\infty t^{\alpha-1} e^{-t} dt.$

- (a) Derive the marginal distributions of X and Y.
- (b) Derive the distribution of X + Y.
- (c) Derive the conditional distributions of Y given X = x.

- 4. Let X_1, X_2, \ldots, X_n be iid Poisson random variables with unknown mean λ . Let $\theta = P(X_1 = 1)$.
 - (a) Find a uniformly minimum variance unbiased estimator T_n of θ .
 - (b) Find the asymptotic distribution of T_n .

- 5. Let X_1, \ldots, X_m be a random sample from $N(\mu_1, \sigma^2)$ and Y_1, \ldots, Y_n a random sample from $N(\mu_2, c^2\sigma^2)$ where c^2 is a known positive number.
 - (a) Obtain maximum likelihood estimators of μ_1, μ_2 , and σ^2 .
 - (b) Derive the likelihood ratio test for testing $H_0: \mu_1 = \mu_2$ vs. $H_1: \mu_1 \neq \mu_2$.

- 6. Let $\{X_1, \ldots, X_n\}$ be a random sample from the normal distribution with mean 0 and variance σ^2 . Put $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$, $S^2 = \sum_{i=1}^n (X_i \bar{X})^2$.
 - (a) Derive the joint probability distribution of \bar{X} and S^2 .
 - (b) What is the probability distribution of $F = \bar{X}^2/S^2$?

- 7. Let X_1, \ldots, X_m be a random sample from an **Uniform** distribution over $(0, \theta_1), \theta_1 > 0$ and Y_1, \ldots, Y_n a random sample from an **Uniform** distribution over $(0, \theta_2), \theta_2 > 0$. Assume that the $X_i's$ are independently distributed of the $Y_j's$.
 - (a) Obtain a minimum set of sufficient and complete statistics for $\{\theta_i, i=1,2\}$.
 - (b) Find the maximum likelihood estimator of $\phi = \theta_1 \theta_2$.
 - (c) Obtain the UMVUE estimator of ϕ .

- 8. Let $(X_1, Y_1), \ldots, (X_n, Y_n)$ be independently and idnetically distributed as (X, Y), where (X, Y) follows a bivariate normal distribution with means $EX = \mu_1$ and $EY = \mu_2$ and with variances and covariance as $Var(X) = \sigma_1^2$, $Var(Y) = \sigma_2^2$ and $Cov(X, Y) = \rho\sigma_1\sigma_2$, respectively. Put $Z_i = X_i Y_i$, $i = 1, \ldots, n$.
 - (a) Based on the observed Z_i values, derive the (1α) % confidence interval for $\theta = \mu_1 \mu_2$ in terms of the central-t distribution.
 - (b) Illustrate how you would use the result in (a) to derive a test procedure for testing the null hypothesis $H_0: \mu_1 = \mu_2$ against the alternative hypothesis $H_1: \mu_1 \neq \mu_2$.

9. Let X_1, \ldots, X_{n+1} be a random sample from a population with density

$$f(x|\theta) = e^{-(x-\theta)}, \quad x \ge \theta,$$

Assume that the prior density for θ is exponential with mean 1.

- (a) Find the posterior density of θ .
- (b) Using squared error loss function, find the Bayes estimator of θ .
- (c) Compare the Bayes estimator of θ with the maximum likelihood estimator of θ as n increases.
- (d) What is the limit of the Bayes estimator as $n \to \infty$.

- 10. Let N be a nonnegative integer valued random variable.
 - (a) Prove that

$$E(N) = \sum_{k=0}^{\infty} P(N > k).$$

(b) Suppose that you perform independent Bernoulli trials $\{X_n, n \geq 0\}$ such that $P(X_n = 1) = 1 - \frac{1}{n}$, with

$$X_n = 1$$
, if success, and $X_n = 0$, if failure;

(thus, the probability of success is not fixed but increases with each trial).

Let N be the number of trials needed to get the first success. Show that E(N)=e=2.718...

- 11. Let X_1, \ldots, X_n be a random sample from Poisson(λ). Let $d_1(\mathbf{X}) = \sum_{i=1}^n X_i/n$ and $d_2(\mathbf{X}) = \sum_{i=1}^n (X_i \bar{X})^2/(n-1)$.
 - (a) Is either of these two estimators an unbiased estimator of λ ? (Fully justify your answer.)
 - (b) Is either of these two estimators UMVUE of λ ? (Fully justify your answer.)
 - (c) Does either of these two estimators achieve the Cramer-Rao Lower bound? (Fully justify your answer.)
 - (d) If the answer to the above question is no, which estimator is better and why?

- 12. Let Y_1, \ldots, Y_n be a random sample from $N(\mu, \sigma^2)$. Consider the problem of testing $H_0: \sigma^2 = \sigma_0^2$ against $H_1: \sigma^2 \neq \sigma_0^2$.
 - (a) Show that the likelihood ratio statistic can be expressed in the form

$$\Lambda(T) = n[-\log(1+T) + T],$$

where T is a statistics and $nT + n \sim \chi^2(n-1)$, under H_0 .

(b) Let W = nT + n, $C_1 = \chi_{\frac{\alpha}{2}}^2(n-1)$ and $C_2 = \chi_{1-\frac{\alpha}{2}}^2(n-1)$. Show that the test which rejects H_0 if $W > C_1$ or $W < C_2$ has size α and power greater than α at any $\sigma^2, \sigma^2 \neq \sigma_0^2$.