Statistics Ph.D. Qualifying Exam: Part II

November 18, 2006

Student Name:	

1. Answer 8 out of 12 problems. Mark the problems you selected in the following table.

Problem	1	2	3	4	5	6	7	8	9	10	11	12
Selected												
Scores												

- 2. Write your answer right after each problem selected, attach more pages if necessary.
- 3. Assemble your work in right order and in the original problem order.

1. Let (X, Y) be a random vector with joint pdf

$$f(x,y) = \frac{\Gamma(a+b+c)}{\Gamma(a)\Gamma(b)\Gamma(c)} x^{a-1} y^{b-1} (1-x-y)^{c-1}, \quad 0 < x < 1, 0 < y < 1, 0 < x+y < 1.$$

where $\Gamma(t)$ is the gamma function. $[\Gamma(t) = \int_0^\infty x^{t-1} e^{-x} dx.]$

- (a) Find the marginal p.d.f. of X and Y.
- (b) Find the joint p.d.f. of W = X + Y and V = X.
- (c) Find the marginal p.d.f. of W = X + Y.

- 2. Let X_1, \ldots, X_n be a sample of size n from U(0, 1).
 - (a) Find the p.d.f. of $\frac{1}{n} \sum_{i=1}^{n} (-\log(X_i))$.
 - (b) Using (a) or other method, find the p.d.f. of $(\prod_{i=1}^n X_i)^{\frac{1}{n}}$.
 - (c) Using (a) and (b) or other method, show that if n is large, $(\prod_{i=1}^n X_i)^{\frac{1}{n}}$ has approximately a $N(\mu, \frac{1}{n}\sigma^2)$ distribution. Find μ and σ^2 .

3. Let X_i , $i = 1, 2, \dots, n$ be iid random variables with $N(\theta, \theta^2)$ distribution, where $\theta > 0$. Let

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 and $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$.

- (a) Show that both \bar{X} and cS are unbiased estimator of θ , where $c = \frac{\sqrt{n-1} \Gamma((n-1)/2)}{\sqrt{2} \Gamma(n/2)}$.
- (b) For a constant a, compute $Var(a\bar{X} + (1-a)(cS))$.
- (c) Find the value of a that produces the estimator with minimum variance among the unbiased estimators of the form $Var(a\bar{X} + (1-a)(cS))$.
- (d) Is $T = (\bar{X}, S^2)$ a complete sufficient statistics for θ ? Justify your answer.

- 4. Let X_i , $i = 1, 2, \dots, n$ be iid random variables with $N(\theta, 1)$ distribution, where θ is an unknown parameter. Consider testing $H_0: \theta \leq \theta_0$ vs. $H_1: \theta > \theta_0$, where θ_0 is a known fixed constant.
 - (a) Derive the maximum likelihood estimator for θ under $H_0: \theta \leq \theta_0$.
 - (b) Show that the likelihood ratio test for $H_0: \theta \leq \theta_0$ vs. $H_1: \theta > \theta_0$ is to reject H_0 when

$$\bar{X} > k$$
,

for some constant k.

- (c) Find the constant k above so that likelihood ratio test is of size α .
- (d) Show that the above likelihood ratio test is a UMP test.

- 5. For each of the following pdfs, let X_i , $i = 1, 2, \dots, n$ be a random sample from that distribution. In each case, find the best unbiased estimator of θ^r , where r < n.
 - (a) $f(x; \theta) = \frac{1}{\theta}, \quad 0 < x < \theta.$
 - (b) $f(x;\theta) = \theta^x (1-\theta)^{1-x}, \quad x = 0, 1; 0 < \theta < 1.$

6. Suppose a random sample of size 2, X_1 and X_2 , is observed from a distribution whose probability mass function under H_0 and H_1 is given by

x	1	2	3	4	5	6	7
$f(x H_0)$	0.01	0.01	0.01	0.01	0.01	0.01	0.94
$f(x H_1)$	0.06	0.05	0.04	0.03	0.02	0.01	0.79

According to the Neyman-Pearson Lemma, the most powerful test for H_0 vs. H_1 is to reject H_0 when

$$\lambda = \frac{L_0}{L_1} = \frac{f(x_1|H_0) \times f(x_2|H_0)}{f(x_1|H_1) \times f(x_2|H_1)} \le k,$$

for some constant k. Assume that k=0.2 is chosen for the test. Using the tables provided below, answer the following questions:

- (a) Find the rejection region. That is, list the set of (x_1, x_2) for which H_0 is rejected.
- (b) Find the Type I error probability α .
- (c) Compute the probability of Type II error for the above test.

L_0	1	2	3	4	5	6	7
1	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0094
2	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0094
3	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0094
4	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0094
5	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0094
6	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0094
7	0.0094	0.0094	0.0094	0.0094	0.0094	0.0094	0.8836
L_1	1	2	3	4	5	6	7
1	0.0036	0.0030	0.0024	0.0018	0.0012	0.0006	0.0474
2	0.0030	0.0025	0.0020	0.0015	0.0010	0.0005	0.0395
3	0.0024	0.0020	0.0016	0.0012	0.0008	0.0004	0.0316
4	0.0018	0.0015	0.0012	0.0009	0.0006	0.0003	0.0237
5	0.0012	0.0010	0.0008	0.0006	0.0004	0.0002	0.0158
6	0.0006	0.0005	0.0004	0.0003	0.0002	0.0001	0.0079
7	0.0474	0.0395	0.0316	0.0237	0.0158	0.0079	0.6241
$\frac{\lambda = L_0/L_1}{1}$	1	2	3	4	5	6	7
1	0.0278	0.0333	0.0417	0.0556	0.0833	0.1667	0.1983
2	0.0333	0.0400	0.0500	0.0667	0.1000	0.2000	0.2380
3	0.0417	0.0500	0.0625	0.0833	0.1250	0.2500	0.2975
4	0.0556	0.0667	0.0833	0.1111	0.1667	0.3333	0.3966
5	0.0833	0.1000	0.1250	0.1667	0.2500	0.5000	0.5949
6	0.1667	0.2000	0.2500	0.3333	0.5000	1.0000	1.1899
7	0.1983	0.2380	0.2975	0.3966	0.5949	1.1899	1.4158

7. Consider the linear model

$$Y = X\beta + \epsilon$$
,

where \boldsymbol{Y} is $(n \times 1)$, $\boldsymbol{\epsilon}$ is $(n \times 1)$, \boldsymbol{X} is $(n \times p)$, and where $E(\boldsymbol{\epsilon}) = \boldsymbol{0}$, $Cov(\boldsymbol{\epsilon}) = \sigma^2 \boldsymbol{I}$.

- (a) State and prove the Gauss Markov Theorem.
- (b) Explain how you would extend the result in (a) to the case where $Cov(\epsilon) = \sigma^2 \Lambda$, where Λ is a known symmetric positive definite matrix.

8. Suppose (X, Y) have a trinomial distribution with parameters n, θ_1, θ_2 , where n is the numbers of trials, and $0 \le \theta_1 + \theta_2 \le 1$. That is,

$$P(X = x, Y = y | \theta_1, \theta_2) = \frac{n!}{x!y!(n-x-y)!} \theta_1^x \theta_2^y (1 - \theta_1 - \theta_2)^{n-x-y}.$$

Suppose we put the Dirichlet density

$$\pi(\theta_1, \theta_2) = \frac{\Gamma(a+b+c)}{\Gamma(a)\Gamma(b)\Gamma(c)} \theta_1^{a-1} \theta_2^{b-1} (1-\theta_1 - \theta_2)^{c-1} \quad 0 \le \theta_1 \le 1, 0 \le \theta_2 \le 1; 0 \le \theta_1 + \theta_2 \le 1,$$

as prior for (θ_1, θ_2) .

- (a) Let r, s, t be positive. Find $E\theta_1^r\theta_2^s(1-\theta_1-\theta_2)^t$.
- (b) Find the posterior distribution of $((\theta_1, \theta_2)|X = x, Y = y)$. Is the Dirichlet distribution a conjugate prior for this problem?
- (c) For any function h of θ_1 and θ_2 , defining the Bayes estimator of $h(\theta_1, \theta_2)$ by $d_B(\mathbf{X}) = E(h(\theta_1, \theta_2)|\mathbf{X})$, find the Bayes estimators of θ_2 , and $\theta_1\theta_2(1 \theta_1 \theta_2)$.

9. Let X and Y be random variables such that $Y|X = x \sim \text{Poisson}(\lambda x)$, and X has density

$$f_X(x) = \frac{\theta^{\theta} x^{\theta - 1} e^{-\theta x}}{\Gamma(\theta)}, \quad x \ge 0.$$

- (a) Prove that
 - i. $E(Y) = \lambda$ and $Var(Y) = \lambda + \theta \lambda^2$.
 - ii. Y has density

$$f_Y(y;\lambda) = \frac{\Gamma(\theta+y)\lambda^y\theta^\theta}{\Gamma(\theta)y!(\theta+\lambda)^{\theta+y}}, \quad y=0,1,2,\dots$$

(b) Now suppose that Y_1, \ldots, Y_n are independent random variables from the distribution given above, with Y_i having mean λ_i , and $\log(\lambda_i) = \beta z_i$, where z_i 's are known covariates, $i = 1, \ldots, n$, and assume that $\theta = 1$. Write a Fisher scoring algorithm for computing the MLE of β , and discuss its properties.

- 10. Let $\{X_1, \ldots, X_n\}$ be a random sample from a normal density with mean 0 and variance σ^2 . Define the quadratic forms $Q_i = (X_1, \ldots, X_n)A_i(X_1, \ldots, X_n)', i = 1, 2$, where the A_i 's are symmetric matrices of given real numbers. Let $rank \ A_i = m_i, i = 1, 2$.
 - (a) Show that if $A_1A_2 = 0$, then Q_1 and Q_2 are independently distributed of one another.
 - (b) Show that if $A_i^2 = A_i$, then $Y_i = Q_i/\sigma^2$ is distributed as a central chi-square random variable with degrees of freedom m_i , i = 1, 2, respectively.
 - (c) Using results from (a) and (b), show that if $m_i + m_2 = n$, then $(Y_i = Q_i/\sigma^2, i = 1, 2)$ are independently distributed as central chi-square random variables with degrees of freedom m_i respectively.

- 11. Let $\{(X_{i,1},\ldots,X_{i,n_i}), i=1,2,3\}$ be independent random samples from normal distributions with means μ_i and variance $2^i\sigma^2(i=1,2,3)$ respectively. Assume that $\{\mu_1=\alpha+\beta+\gamma, \mu_2=2\alpha+\beta-\gamma, \mu_3=\alpha+2\beta-\gamma\}.$
 - (a) Obtain the MLE (Maximum Likelihood Estimator) of $\{\alpha, \beta, \gamma, \sigma^2\}$. What are the optimal properties of these MLE's?
 - (b) Derive the 0.95% confidence interval for $\alpha \beta$.
 - (c) Assuming a non-informative prior $P\{\alpha, \beta, \gamma, \sigma^2\} \propto \{\sigma^2\}^{-1}$, derive the 95% HPD (Highest Posterior Density) Bayesian interval for $\alpha \beta$. How is this Bayesian HPD interval compared with the confidence interval derived in (b)?

- 12. Let $\{(X_i, Y_i), i = 1, ..., n\}$ be a random from a bivariate normal distribution with means $EX = \mu_1$ and $EY = \mu_2$ and with variances and covariance as $Var(X) = \sigma_1^2$, $Var(Y) = \sigma_2^2$ and $Cov(X, Y) = \rho \sigma_1 \sigma_2$.
 - (a) Derive the size- α likelihood ratio testing procedure for testing $H_0: \mu_1 = \mu_2$ against the alternative hypothesis $H_1: \mu_1 \neq \mu_2$.
 - (b) Derive the probability distribution of your test statistic under H_0 .
 - (c) Derive the $100(1-\alpha)\%$ confidence interval for $\mu_1 \mu_2$. If you use this confidence interval to test the hypothesis H_0 , how is it compared with the procedure derived in (a)?