Statistics Ph.D. Qualifying Exam: Part II

November 20, 2004

Student Name:

1. Answer 8 out of 12 problems. Mark the problems you selected in the following table.

1	2	3	4	5	6	7	8	9	10	11	12

- 2. Write your answer right after each problem selected, attach more pages if necessary.
- 3. Assemble your work in right order and in the original problem order.

1. Let X_1 and X_2 be two independent random variables each with an exponential p.d.f.

$$f(x) = \lambda e^{-\lambda x}, \quad x > 0, \lambda > 0.$$

Define $W = |X_1 - X_2|$ and $S = X_1 + X_2$.

- (a) Find the joint p.d.f. of W and S.
- (b) Find the marginal p.d.f. of W.

2. Let (X, Y, Z) be a random vector following a multinomial distribution

$$f(x,y,z) = \frac{n!}{x!y!z!(n-x-y-z)!}p^xq^yr^z(1-p-q-r)^{n-x-y-z},$$

for $x, y, z = 0, 1, 2, \dots, n$ and $x + y + z \le n$ where $0 \le p, q, r, p + q + r \le 1$.

- (a) Find the moment generating function of X, Y, Z. That is, find $M(t_1, t_2, t_3) = E(e^{t_1X + t_2Y + t_3Z})$.
- (b) Derive the distribution of X + Y + Z.
- (c) Derive the conditional distribution of X,Y given Z=z.

- 3. For each of the following p.d.f.s, let X_1, X_2, \dots, X_n be a random sample form that distribution, find the UMVUE of θ^r .
 - (a) $f(x; \theta) = \frac{1}{\theta}, 0 < x < \theta, r < n.$
 - (b) $f(x; \theta) = e^{-(x-\theta)}, x > \theta$.

- 4. Suppose that an random sample $X_1, ..., X_n$ taken from a normal distribution with mean θ and variance σ^2 and suppose that the prior distribution on θ is a normal distribution with mean μ and variance τ^2 , where σ, μ and τ are known constants.
 - (a) Find the joint pdf of \bar{X} and θ .
 - (b) Find the marginal pdf of \bar{X} .
 - (c) Find the posterior pdf of θ given \bar{X} .
 - (d) Find the Bayes estimator of θ under a square loss function.

- 5. Suppose that an random sample $X_1, ..., X_n$ taken from an exponential distribution with mean θ and another random sample $Y_1, ..., Y_m$ taken from exponential distribution with mean μ .
 - (a) Derive the likelihood ratio test for $H_0: \theta = \mu$ vs. $H_1: \theta \neq \mu$.
 - (b) Show the test above can be based on the statistics

$$T = \frac{\sum X_i}{\sum Y_i}.$$

(c) Find the sampling distribution of T when H_0 is true.

6. Let Y_1, \ldots, Y_N be independent random variable such that $Y_i \sim \text{Binomial}(n_i, p_i)$, where

$$P_i = \frac{1}{1 + e^{\alpha + \beta x_i}},$$

and x_i is a fixed covariate, i = 1, ..., N.

- (a) Find a set of jointly sufficient statistics for (α, β) .
- (b) Find $\tilde{\alpha}, \tilde{\beta}$, the estimates of α and β that minimize

$$Q = \sum_{i=1}^{N} n_i \hat{p}_i (1 - \hat{p}_i) (\alpha + \beta x_i - l_i)^2,$$

where
$$\hat{p}_i = \frac{Y_i}{n_i}$$
 and $l_i = \log(\frac{\hat{p}_i}{1-\hat{p}_i}), i = 1, \dots, N$.

(c) Let $\hat{\alpha}$ and $\hat{\beta}$ represent the conditional expectations of $\tilde{\alpha}, \tilde{\beta}$ given the jointly sufficient statistics for α, β . Prove that for any constants a and b

Mean Square
$$(a\hat{\alpha} + b\hat{\beta}) \leq$$
 Mean Square $(a\tilde{\alpha} + b\tilde{\beta})$

- 7. (a) Let $\{T_n\}$ be a sequence of random variables such that as $n \to \infty$, $\sqrt{n}(T_n \theta)$ converges in distribution to $N(0, \sigma^2(\theta))$ for all $\theta \in \Omega$. Let g(x) be a differentiable function with continuous derivative $g'(\theta)$ for all $\theta \in \Omega$. Show that as $n \to \infty$, $\sqrt{n}[g(T_n) g(\theta)]$ converges to $N[0, \sigma^2(\theta)(g'(\theta))^2]$ for each $\theta \in \Omega$.
 - (b) Let $X_1, X_2 ...$ be a sequence of random variables from $N(\mu, \sigma^2)$. Let $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ and $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X}_n)^2$. Find the limiting distribution of $\sqrt{n}(S_n^2 \sigma^2)$ and obtain a transformation $g(S_n^2)$ of S_n^2 , whose distribution is independent of σ^2 .

8. Consider the linear model

$$Y = X\beta + \epsilon$$
,

where \boldsymbol{Y} is $(n \times 1)$, $\boldsymbol{\epsilon}$ is $(n \times 1)$, \boldsymbol{X} is $(n \times p)$, and where $E(\boldsymbol{\epsilon}) = \boldsymbol{0}$, $Cov(\boldsymbol{\epsilon}) = \sigma^2 \boldsymbol{I}$.

- (a) Prove the Gauss Markov Theorem. That is, prove that the estimator $l'\hat{\beta}$ of the estimable function $l'\beta$ has the smallest variance among all unbiased estimators of $l'\beta$ that are linear functions of Y. $[\hat{\beta}]$ is the least squares estimator of β .
- (b) Extend the result in (a) to the case where $Cov(\epsilon) = \sigma^2 \Lambda$, where Λ is a non-singular diagonal matrix.

- 9. Let $\{(X_{i,1},\ldots,X_{i,n}), i=1,2\}$ be independent random samples from normal distributions with means μ_i and variance σ^2 respectively. Let $\bar{X}_i = \frac{1}{n} \sum_{j=1}^n X_{i,j}, i=1,2$ and $S_i^2 = \sum_{j=1}^n (X_{i,j} \bar{X}_i)^2, i=1,2$. Put $Y_i = \frac{\sqrt{n}\bar{X}_i}{\sqrt{\hat{\sigma}^2}}, i=1,2$, where $\hat{\sigma}^2 = (S_1^2 + S_2^2)/(2n-2)$.
 - (a) Obtain the joint pdf (probability density function) of $\{Y_1, Y_2\}$ under the assumption $(\mu_i = 0, i = 1, 2)$.
 - (b) What is the pdf of $Y_1 Y_2$ under the assumption $\mu_1 = \mu_2$?

- 10. Let X_1, \ldots, X_n be a random sample from the normal distribution with mean μ_1 and variance σ^2 . Let Y_1, \ldots, Y_m be a random sample from the normal distribution with mean μ_2 and variance $4\sigma^2$. Consider the hypotheses $H_0: \mu_1 \mu_2 = 4$ versus $H_1: \mu_1 \mu_2 \neq 4$.
 - (a) Derive the level- α Likelihood Ratio test for testing H_0 versus H_1 .
 - (b) What is the sampling distribution of your testing statistic under H_0 ?

- 11. Let X_1, \ldots, X_n be a random sample from the density $f(x, \theta) = \frac{\log \theta}{\theta 1} \theta^x, 0 < x < 1, \theta > 1$.
 - (a) Obtain a sufficient and complete statistic for θ .
 - (b) Find a function $\phi = \phi(\theta)$ of θ such that there is an unbiased estimator $\hat{\phi}$ of ϕ with variance $Var(\hat{\phi})$ achieving the Fisher-Cramer-Rao lower bound. Obtain $\hat{\phi}$.
 - (c) Is the estimator $\hat{\phi}$ obtained in (b) above the UMVUE (Uniformly Minimum Varainced Unbiased estimator) of ϕ ? Why?

12. Consider the following regression model:

$$Y_j = \theta_1 + \theta_2(x_j - \bar{x}) + \epsilon_j, j = 1, \dots, n$$

where $\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i,$

Assume that the ϵ_j 's are independently distributed as normal random variables with means 0 and variance σ^2 and that the x_i 's are non-stochastic.

- (a) Assuming a non-informative prior for $\{\theta_i, i = 1, 2, \sigma^2\}$ as $P(\theta_i, i = 1, 2, \sigma^2) \propto (\sigma^2)^{-1}$, derive the posterior distribution of $\{\theta_i, i = 1, 2\}$.
- (b) Derive the posterior distribution of θ_2 and a (1α) % HPD (Highest Posterior Density) interval for θ_2 . How is this HPD interval comparing with the (1α) % confidence interval for θ_2 ?