Statistics Ph.D. Qualifying Exam: Part II

October 25, 2003

Student Name:	
Diddelli Name.	

1. Answer 8 out of 12 problems. Mark the problems you selected in the following table.

1	2	3	4	5	6	7	8	9	10	11	12

- 2. Write your answer right after each problem selected, attach more pages if necessary.
- 3. Assemble your work in right order and in the original problem order.

- 1. Let $\{X_1, \ldots, X_n\}$ be a random sample from a population with density $f(x, \theta) = \{\theta^2 + 2\theta (1-\theta)\}^x (1-\theta)^{2(1-x)}, x = 0, 1, 0 < \theta < 1.$
 - (a) Derive the moment estimator of θ .
 - (b) Derive the MLE of θ by using the EM-algorithm.
 - (c) Which estimator you would prefer for estimating θ ?

2. Let X_1, \ldots, X_n be a random sample from a Normal $(\mu, 1/\tau)$ population. Assume the following prior specifications on μ and τ : $\mu|\tau \sim N(\mu_0, \frac{1}{\lambda_0 \tau}), \tau \sim Gamma(\alpha_0, \beta_0)$, with p.d.f.

$$\frac{1}{\Gamma(\alpha_0)\beta_0^{\alpha_0}}\tau^{\alpha_0-1}e^{-\tau/\beta_0},$$

where $\mu_0, \alpha_0, \beta_0, \lambda_0$ are constants.

- (a) Show that this prior specification is conjugate for this problem.
- (b) Find the posterior distribution of μ .

3. Let Y_i denote the response of a subject at time i, i = 1, ..., n. Suppose that Y_i satisfies the following model

$$Y_i = \theta + \epsilon_i, \quad i = 1, \dots, n,$$

where ϵ_i can be written as $\epsilon_i = ce_{i-1} + e_i$ for given constant $c, 0 \le c \le 1$, and the e_i are independent identically distributed with mean zero and variance σ^2 , $i = 1, \ldots, n$; $e_0 = 0$ (the ϵ_i are called moving average errors). Let

$$\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i, \quad \hat{\theta} = \sum_{i=1}^{n} a_i Y_j,$$

where

$$a_j = \sum_{i=0}^{n-j} (-c)^i \left(\frac{1 - (-c)^{j+1}}{1+c}\right) / \sum_{i=1}^n \left(\frac{1 - (-c)^i}{1+c}\right)^2.$$

- (a) Show that $\hat{\theta}$ is the weighted least squares estimate of θ .
- (b) Show that if $e_i \sim N(0, \sigma^2)$, then $\hat{\theta}$ is the MLE of θ .
- (c) Show that \bar{Y} and $\hat{\theta}$ are both unbiased but $Var(\hat{\theta}) \leq Var(\bar{Y})$, while the inequality holds unless c = 0.

- 4. Let X_1, \ldots, X_n be i.i.d. having the uniform distribution on the interval $(\theta_1 \theta_2, \theta_1 + \theta_2)$. Here we assume that θ_2 is positive.
 - (a) Find the UMVUE's for θ_1 and θ_2 .
 - (b) Find the UMVUE for θ_1/θ_2 .

- 5. Let $\{X_1, \ldots, X_n\}$ be a random sample from a continuous probability distribution with density $f(x; \theta)$.
 - (a) Consider the problem of testing $H_0: \theta = \theta_0$ vs $H_1: \theta = \theta_1$. Show that the size α MP (Most Powerful) test for testing H_0 vs H_1 is given by: Reject H_0 at level α if $\frac{L_1}{L_0} \geq k$ for some constant k > 1, where $L_i = \prod_{j=1}^n f(X_j; \theta_i), i = 0, 1$.
 - (b) Given that UMP (Uniformly Most Powerful) tests for testing $H_0: \theta = \theta_0$ vs $H_2: \theta > \theta_0$ exist, illustrate how one would use result of (a) to derive the size α UMP test for testing H_0 vs H_2 .

6. For the linear model

$$Y = X\beta + \epsilon,$$

such that
$$E(\epsilon) = 0$$
 and $Cov(\epsilon) = \sigma^2 I$

- (a) State the Gauss-Markov theorem.
- (b) Prove Gauss-Markov Theorem.

7. Assume that random variables X and Y follow a trinomial distribution with the probability distribution function

$$P(X=x,Y=y|\theta,\lambda) = \frac{n!}{x!y!(n-x-y)!} \theta^x \lambda^y (1-\theta-\lambda)^{n-x-y}, \quad x \ge 0, y \ge 0, x+y \le n.$$

Suppose further that (θ, λ) have a uniform prior distribution over the triangular region $0 < \theta + \lambda < 1$.

- (a) Find the posterior distribution of (θ, λ) given X and Y.
- (b) Find the Bayes estimator of θ under square error loss function.
- (c) Find the Bayes estimator of $\theta + \lambda$ under square error loss function.

8. If X_1, \ldots, X_n is a random sample of size n from an exponential population

$$f(x; \theta, \sigma) = (1/\sigma)e^{-(x-\theta)/\sigma}, \quad \theta \le x < \infty,$$

= 0 otherwise.

Let \bar{X} be the sample mean and $X_{(1)}$ be the smallest order statistic.

- (a) Find the joint p.d.f. of $\bar{X} X_{(1)}$ and $X_{(1)}$.
- (b) Find the marginal p.d.f.s of $\bar{X} X_{(1)}$ and $X_{(1)}$.
- (c) Are $\bar{X} X_{(1)}$ and $X_{(1)}$ independently distributed ?
- (d) Find the UMVUE of θ .

9. Let X_1, \ldots, X_n be a random sample from a population with density

$$f(x;\theta) = \frac{1}{\theta}e^{-x/\theta}.$$

- (a) Find the M.L.E. of $e^{-t/\theta}$, where t is a positive constant.
- (b) Find the UMVU estimator of $e^{-t/\theta}$.
- (c) Is the UMVU estimator of $e^{-t/\theta}$ an efficient estimator ?

10. If a random vector (U, V) is uniformly distributed over the region

$$C = \left\{ (u, v) | 0 \le u \le \sqrt{h\left(\frac{v}{u}\right)} \right\},\,$$

where h(y) is a nonnegative function.

- (a) Show that the marginal p.d.f. of Y = V/U is proportional to h.
- (b) Explain how to generate a Cauchy distribution using the above result with $h(y) = \frac{1}{1+y^2}$.
- (c) Describe another method to generate a Cauchy distribution.

- 11. Let X_1, \ldots, X_m be a random sample from $N(\mu_1, \sigma^2)$ and Y_1, \ldots, Y_n a random sample from $N(\mu_2, 4\sigma^2)$.
 - (a) Obtain maximum likelihood estimators of μ_1, μ_2 , and σ^2 .
 - (b) Derive the likelihood ratio test for testing $H_0: \mu_1 = \mu_2$ vs. $H_1: \mu_1 \neq \mu_2$. What is the sampling distribution of your test statistic under H_0 ?
 - (c) Obtain a $100(1-\alpha)\%$ confidence interval for σ^2 .

- 12. Let X_1, X_2, \ldots, X_m be i.i.d. uniformly distributed on the interval $(0, \theta)$, and Y_1, \ldots, Y_n i.i.d. uniform on $(0, \tau)$. Assume the X's and Y's are mutually independent.
 - (a) Derive the density for

$$U = (\max X_i)/(\max Y_i).$$

(b) Suppose we wish to test the hypotheses

$$H_0: \theta \leq \tau \text{ vs. } H_1: \theta > \tau.$$

Consider the test which rejects when U > c for some given critical value c. Show that the power of the test is monotonically increasing in $\rho = \theta/\tau$.

(c) If m=4 and n=2, find the critical value of the test in (b) so as to achieve level $\alpha=1/24$.