Statistics Ph.D. Qualifying Exam: Part II

November 9, 2002

Student Name:

1. Answer 8 out of 12 problems. Mark the problems you selected in the following table.

1	2	3	4	5	6	7	8	9	10	11	12

- 2. Write your answer right after each problem selected, attach more pages if necessary.
- 3. Assemble your work in right order and in the original problem order.

- 1. Let $\{X_1, \ldots, X_n\}$ be a random sample from the population with density $f(x, \theta)$, where $f(x, \theta)$ is given by: $f(x, \theta) = e^{-(x-\theta)}, x > \theta$; = 0 if otherwise. Denote by $\{Y_i = i(X_{(n-i+1)} X_{(n-i)}) \text{ if } i = 1, \ldots, n-1, Y_n = n(X_{(1)} \theta), \text{ where } X_{(r)} \text{ is the } r th \text{ order statistic, } r = 1, \ldots, n.$
 - (a) Show that $\{Y_i, i = 1, ..., n\}$ are independently and identically distributed random variables with density $g(y) = e^{-y}, y > 0; = 0, y \le 0$. Use this result to derive the UMVUE (Uniformly Minimum Varianced Unbiased estimator) of θ .
 - (b) Suppose the density of the prior distribution is given by: $h(\theta) = e^{-(a-\theta)}, a > \theta$; = $0, a \le \theta$, where a is a known constant. Derive the Bayese estimator of θ and compare it with the UMVUE of θ .

2. Let $\{X_1, \ldots, X_n\}$ be a random sample from the population with density $g(x; \theta, \mu_1, \mu_2) = \theta f(x; \mu_1) + (1 - \theta) f(x; \mu_2)$, where $f(x; \mu)$ is the density of $N(\mu, 1)$ and $0 < \theta < 1$. Illustrate how to derive a procedure to compute the MLE (Maximum Likelihood Estimator) of $\{\theta, \mu_1, \mu_2\}$ by using the EM-algorithm.

3. Let $\{X_1, \ldots, X_n\}$ be a random sample from the population with density $f(x; \theta_i, i = 1, 2)$, where $f(x; \theta_i, i = 1, 2)$ is given by:

$$f(x; \theta_i, i = 1, 2) = \frac{1}{\theta_2 - \theta_1} \text{ if } \theta_1 \le x \le \theta_2,$$

= 0 if for otherwise.

- (a) Show that the statistics $\{X_{(1)} = Min(X_1, \dots, X_n), X_{(n)} = Max(X_1, \dots, X_n)\}$ are sufficient and complete statistics for the parameters $\{\theta_i, i = 1, 2\}$.
- (b) Derive the UMVUE of $\theta_2 \theta_1$.

- 4. Let U be a Uniform (0,1) random variable. Let λ a constant, such that $0 < \lambda < 1$, and let V be a random variable with support (0,1) that is independent of U.
 - (a) Prove that $\min\left(\frac{U}{\lambda}, \frac{1-U}{1-\lambda}\right)$ has a Uniform(0, 1) distribution.
 - (b) Find $P(\min\left(\frac{U}{V}, \frac{1-U}{1-V}\right) > .5)$.
 - (c) If $X \sim N(0,4)$ and $Z \sim N(0,1)$ with distribution function Φ . Find a relation between the distribution functions of $2\min(\Phi(X), (1-\Phi(X)))$ and $2\min(\Phi(Z), (1-\Phi(Z)))$

5. Let Y_1, \ldots, Y_N be independent random variable such that $Y_i \sim \text{Binomial}(n_i, p_i)$, where

$$p_i = \frac{1}{1 + e^{\beta' x_i}},$$

and x_i are vectors of fixed covariates, i = 1, ..., N.

- (a) Find a set of jointly sufficient statistics for β .
- (b) Suppose $\tilde{\beta}$ is the estimate of β that minimizes

$$Q = \sum_{i=1}^{N} n_i \hat{p}_i (1 - \hat{p}_i) (x_i' \beta - l(\hat{p}_i))^2,$$

where $\hat{p}_i = Y_i/n_i$, and $l(\hat{p}_i) = \log(\frac{\hat{p}_i}{1-\hat{p}_i}), i = 1, \dots, N$. Find $\tilde{\beta}$.

(c) Let $\hat{\beta}$ be MLE's of β . Compare the two methods of parametric estimation. Which is better. Sketch a proof of your statement.

6. Let X_1 and X_2 be independently and identically distributed from the following probability mass function

$$p(x) = P(X = x) = pq^x$$
, $x = 0, 1, 2, ...$, where $0 and $q = 1 - p$.$

- (a) Find the UMVUE for $(1+p)^2$.
- (b) Find the UMVUE for $(1+p)^2/p$.

- 7. Let $Y_1, Y_2, \ldots, Y_n, X_1, X_2$ be i.i.d. with continuous distribution function F. Define $Y_{(0)} = -\infty, Y_{(n+1)} = +\infty$ and for $j = 1, 2, \ldots, n$ let $Y_{(j)}$ be the jth smallest Y_j .
 - (a) Find $P[Y_{(j)} \le X_1 \le Y_{(j+1)}]$ for j = 0, 1, ..., n.
 - (b) Find $P[Y_{(j)} \le X_1 \le Y_{(j+1)} \le X_2 \le Y_{(j+2)}]$ for $j = 0, 1, \dots, n-1$.

8. Consider independent random samples X_{i1}, \ldots, X_{in} (i = 1, 2) from the uniform populations:

$$f(x_i) = \frac{1}{\theta_i}, \quad 0 < x_i < \theta_i, \quad \theta_i > 0, \quad i = 1, 2.$$

Let $Y_i = \max(X_{i1}, \dots, X_{in}), i = 1, 2, \text{ and } Y = \max(Y_1, Y_2).$

(a) Show that the likelihood ratio statistic to test the hypothesis $H_0: \theta_1 = \theta_2$ is given by

$$Z = (Y_1 Y_2 / Y^2)^n.$$

(b) Obtain the exact distribution of $-2 \log Z$ under H_0 .

- 9. Let X denote a nonnegative integer valued random variable. The function $\lambda(n) = P\{X = n | X \ge n\}, n \ge 0$, is called the discrete hazard rate function.
 - (a) Show that $P\{X = n\} = \lambda(n) \prod_{i=0}^{n-1} (1 \lambda(i)).$
 - (b) Show that we can simulate X by generating independent uniform (0,1) random variables U_1, U_2, \ldots stopping at $X = \min\{n : U_n \leq \lambda(n)\}$.
 - (c) Apply this method to simulating a geometric random variable. Explain why it works.
 - (d) Suppose that $\lambda(n) \leq p < 1$ for all n. Consider the following algorithm for simulating X and explain why it works: Simulate $X_i, U_i, i \geq 1$, where X_i is geometric with mean 1/p and U_i is a uniform (0,1) random variable. Set $S_k = X_1 + \ldots + X_k$ and let

$$X = \min \{ S_k : U_k \le \lambda(S_k)/p \}.$$

- 10. Suppose that Λ is distributed as V/s_0 , where s_0 is some constant and $V \sim \chi^2(k)$, and that given $\Lambda = \lambda, X_1, \dots, X_n$ are i.i.d. Poisson distributed with parameter λ . Let $T = \sum_{i=1}^n X_i$.
 - (a) Show that $(\Lambda | T = t)$ is distributed as W/s, where $s = s_0 + 2n$ and $W \sim \chi^2(m)$ with m = k + 2t.
 - (b) Show how quantiles of the χ^2 distribution can be used to determine level (1α) upper and lower limits for λ .

- 11. Let (X_i, Y_i) , $i = 1, 2, \dots, n$ be n i.i.d. random vectors, where $X_i \sim N(\theta, 1)$, $P(Y_i = 1) = p$, $P(Y_i = 0) = 1 p$, and X_i and Y_i are independent. Suppose that we can only observe the product $Z_i = X_i Y_i$, $i = 1, 2, \dots, n$.
 - (a) Find a minimal sufficient statistics for (p, θ) .
 - (b) Find the maximum likelihood estimator of p and θ .

12. Let X_1, \ldots, X_n be a random sample of size n from a population with density

$$f(x;\theta) = \frac{x}{\theta^2} e^{-x^2/(2\theta^2)}, \quad x > 0.$$

Let Y_1, \ldots, Y_n be a random sample of size n from a population with density

$$g(y; \mu) = \frac{1}{\mu} e^{-x/\mu}, y > 0.$$

- (a) Find the uniformly post powerful test for $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$ based on sample $\{X_1, \ldots, X_n\}$.
- (b) Find the uniformly post powerful test for $H_0: \mu \leq \mu_0$ versus $H_1: \mu > \mu_0$ based on sample $\{Y_1, \ldots, Y_n\}$.
- (c) Consider a transformation $Z_i = X_i^2$ and then draw a connection between questions (a) and (b).