PhD Qualifying Exam in Real Analysis January 2015

Do 6 of the 8 problems

- 1. Let $f:[a,b]\to\mathbb{R}$.
- (a) What does it mean for f to be absolutely continuous?
- (b) Let f be absolutely continuous and satisfy $f(x) > \varepsilon > 0$ for all $x \in [a, b]$. Prove that g = 1/f is absolutely continuous.
- 2. State Hölder's inequality for functions on the unit interval [0,1]. Prove that if $1 \le p < r < \infty$, then $f \in L^r[0,1]$ implies $f \in L^p[0,1]$.
 - 3. Let (Ω, Σ, μ) be a measure space.
 - (a) State Fatou's Lemma for a sequence of Σ -measurable functions.
- (b) Use Fatou's Lemma to prove Lebesgue's Dominated Convergence Theorem, which you should state precisely.
 - 4. Let X be a Hilbert space. Let $\{f_n\}$ be a sequence in X.
 - (a) Suppose f_n converges weakly to f. Prove that $||f_n||$ is bounded.
- (b) Suppose that in (a), we assume in addition that $||f_n|| \to ||f||$. Then prove that $||f_n f|| \to 0$.
- 5. Prove or disprove the following statement. If $f_n : \mathbb{R} \to \mathbb{R}$ is a sequence of Lebesgue integrable functions and $f_n \to 0$ in measure, then $f_n \to 0$ in $L^1(\mathbb{R})$.
- 6. Let $E \subset [0,1]$ have positive Lebesgue outer measure, and let 0 < a < 1 be given. Prove that there is an interval L such that the Lebesgue outer measure of $E \setminus L$ is at least a times the length of L.
- 7. Show that any normed vector space can be isometrically embedded into a Banach space.
 - 8. Let $f \in L^1(0,\infty)$. Define

$$g(t) = \int_{0}^{\infty} e^{-tx} f(x) dx.$$

Prove that g is bounded and continuous on $[0, \infty)$ and

$$\lim_{t\to\infty}g(t)=0.$$