Qualifying Examination

Analysis

August 19, 2015

Complete any five of the following seven problems. You have three hours.

- (1) Let L^1 and L^2 be the usual Lebesgue spaces over the interval [0,1]. Prove the following statements:
 - a) $\{f: \int |f|^2 \le 1\}$ is closed in L^1 and has empty interior.
 - b) The inclusion map L^2 into L^1 is continuous but not onto.
- (2) (a) Use the Hahn-Banach Theorem for real normed spaces to prove the Hahn-Banach Theorem for complex normed spaces.
 - (b) Show that if Y is a closed subspace of a normed space X and $x \in X$ but $\notin Y$ then there exists a bounded linear functional f on X such that ||f|| = 1, f(y) = 0 for all $y \in Y$ and f(x) = d(x, Y).
- (3) Let $f:[a,b]\to\mathbb{R}$.
 - (a) Prove that if f is a Lipschitz function then f is absolutely continuous.
 - (b) State precisely the Fundamental Theorem of Calculus for the Lebesgue integral.
- (4) Prove the following statements:
 - (a) Every finite dimensional normed space is reflexive.
 - (b) Every bounded linear functional on a reflexive normed space X is norm attaining.
- (5) Consider the operator L given by

$$Lf(x) = \int_{0}^{\infty} exp(-tx)f(t)dt.$$

View L as a linear operator on the space $L^p(0,\infty)$. Show that L is unbounded if $1 and <math>p \neq 2$. **Hint**: consider the functions $f_r(x) = exp(-rx)$, for r > 0.

(6) Let $\{f_n\}$ be a sequence in $L^1(0,\infty)$. If $f_n(x) \to f(x)$ for a.e. in $(0,\infty)$ does

$$\int_0^\infty |f_n(x) - f(x)| dx \to 0?$$

Give a proof or find a counterexample. Is the function f necessarily integrable? Explain your answer.

- (7) State the Radon-Nikodym Theorem for σ -finite measures. Let ν , μ and λ be σ -finite measures on the measurable space (X, \mathcal{A}) .
 - a) Assume that $\nu \ll \mu$ and $\lambda \ll \mu$. Show that

$$\frac{d(\nu+\lambda)}{d\mu} = \frac{d\nu}{d\mu} + \frac{d\lambda}{d\mu}, \ a.e.[\mu].$$

1

b) If X = [0, 1] and \mathcal{M} is the collection of Lebesgue measurable subsets of X and take ν to be the Lebesgue measure and μ the counting measure on \mathcal{M} . Show that ν is absolutely continuous with respect to μ but there is no function f for which $\nu(A) = \int_A f d\mu$ for all $A \in \mathcal{M}$. Explain why this is not a counterexample to the Radon-Nikodym Theorem.