Ph.D. Qualifying Exam Real Variables, August 2013

Solve any 5 of the following 8 problems. Please write carefully and give sufficient explanations.

Problem 1

Let $A_n \subset \mathbb{R}$, $n \in \mathbb{N}$. Define

$$\underline{\lim} A_n = \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} A_n, \quad \overline{\lim} A_n = \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_n.$$

Let m be the Lebesgue measure on \mathbb{R} and m^* its outer measure.

(a) Show that for any sequence of Lebesgue measurable sets A_n it holds

$$m(\lim A_n) \leq \lim m(A_n).$$

(b) Show that for any sequence of sets $A_n \subset \mathbb{R}$,

$$m^*(\lim A_n) < \lim m^*(A_n).$$

Problem 2

Let $f_n: A \to \mathbb{R}$, $A \in \mathcal{M}$, be measurable and $f_n \ge 0$. Show:

- (a) If $\lim_{n\to\infty} \int_A f_n = 0$ then $f_n \to 0$ in measure on A.
- (b) Give an example that the measure convergence cannot be replaced by convergence a.e.

Problem 3

Prove or disprove:

$$\lim_{n \to \infty} \int_0^1 n^2 x (1-x)^n \, dx = \int_0^1 \lim_{n \to \infty} n^2 x (1-x)^n \, dx.$$

Problem 4

Let $f_n: \mathbb{R} \to \mathbb{R}$ be nonnegative and Lebesgue integrable functions on \mathbb{R} such that f_n is convergent to f on \mathbb{R} . Assume also that $\lim_{n\to\infty} \int_{\mathbb{R}} f_n(x) dx = \int_{\mathbb{R}} f(x) dx < \infty$. Show that for each Lebesgue measurable set $A \subset \mathbb{R}$,

$$\lim_{n \to \infty} \int_A f_n(x) dx = \int_A f(x) dx.$$

HINT: Apply the Fatou Lemma.

Problem 5

State and prove the Minkowski Inequality in L^p for $1 \le p < \infty$.

Problem 6

- (I) State the Radon-Nikodym Theorem for σ -finite measure space (X, \mathcal{B}, μ) .
- (II) Let $\mu, \nu, \nu_i, i = 1, 2$, be σ -finite measures on the measurable space (X, \mathcal{B}) . Let the symbol $\left[\frac{d\nu}{d\mu}\right]$ denote the Radon-Nikodym derivative of ν with respect to μ . Show:
- (i) If ν is absolutely continuous with respect to μ , that is $\nu \ll \mu$, and f is a nonnegative measurable function, then

$$\int f \, d\nu = \int f \left[\frac{d\nu}{d\mu} \right] \, d\nu.$$

(ii) If $\nu_1 \ll \mu$ and $\nu_2 \ll \mu$ then

$$\left[\frac{d(\nu_1+\nu_2)}{d\mu}\right] = \left[\frac{d\nu_1}{d\mu}\right] + \left[\frac{d\nu_2}{d\mu}\right].$$

Problem 7

Recall that the space ℓ^{∞} consists of all sequences $x = (\xi_j)$ such that $||x||_{\infty} = \sup_{j \in \mathbb{N}} |\xi_j| < \infty$.

- (a) Show that $T: \ell^{\infty} \to \ell^{\infty}$ defined by $y = (\eta_j) = Tx$, $\eta_j = \frac{\xi_j}{j}$ for $x = (\xi_j)$, is linear and bounded.
- (b) Let $\mathcal{R}(T)$ be the range of T. Show that $\mathcal{R}(T)$ is not a closed subspace of ℓ^{∞} .
- (c) Consider the inverse operator $T^{-1}: \mathcal{R}(T) \to \ell^{\infty}, \, \mathcal{R}(T) \subset \ell^{\infty}$. Show that T^{-1} is unbounded.

Problem 8

Let $E = [0,1] \times [0,1]$, m^2 be the product Lebesgue measure on \mathbb{R}^2 , and

$$f(x,y) = \frac{x^2 - y^2}{(x^2 + y^2)^2}.$$

Investigate the existence and equality of

$$\int_{E} f dm^{2}$$
, $\int_{0}^{1} \int_{0}^{1} f(x, y) dx dy$ and $\int_{0}^{1} \int_{0}^{1} f(x, y) dy dx$.