ANALYSIS QUALIFYING EXAM, SEPTEMBER 13, 2008

Do all 5 problems. Good luck.

- 1. (a) State carefully and precisely the Fundamental Theorem of Calculus for the Lebesgue integral.
- (b) Let $f(x) = x^{\theta} \sin(1/x)$ for $0 \le x < 1$ and f(0) = 0. For which real values of θ is f absolutely continuous on [0,1]?
 - 2. Let $(\Omega, \sum, m$) be a measure space. For $\,A_n \in \sum \,$ let

 $\limsup A_n = \{x \in \Omega : x \in A_n \text{ for infinitely many positive integers } n\}.$

- (a) Show that $\limsup A_n = \bigcap_{j=1}^{\infty} \cup_{k=j}^{\infty} A_k$ and conclude $\limsup A_n \in \sum$.
 - (b) Assuming $\sum_{n>1} m(A_n) < \infty$, prove that $m(\limsup A_n) = 0$.
 - 3. For j = 1, 2 let

$$f_j(t) = \int_0^\infty e^{-xt} g_j(x) dx$$

where g_j is continuous on $[0,\infty)$ and

$$|g_j(x)| \le 100e^{\sqrt{x}}$$

for all positive x.

- (a) Prove that f_1 is continuous on $(0, \infty)$.
- (b) Prove that $\lim_{t\to\infty} f_1(t) = 0$.
- (c) Give examples of g_1 , g_2 so that $\lim_{t\to 0} f_1(t) = 5$, $\lim_{t\to 0} f_2(t) = -\infty$.
 - 4. Let $A:Dom(A)\subset H\to H$ be a linear operator satisfying the condition

$$\langle Ax, y \rangle = \langle x, Ay \rangle$$

for all x,y in the domain Dom(A); here < .,.> is the inner product on a complex Hilbert space H. Call Φ_j an eigenvector of A corresponding to the eigenvalue b_j if Φ_j is a nonzero vector in Dom(A) and $A\Phi_j = b_j\Phi_j$; here b_j is a complex number. Suppose that b_1 and b_2 are two different eigenvalues.

- (a) Show that b_1 is real.
- (b) Show that the corresponding eigenvectors satisfy $\langle \Phi_1, \Phi_2 \rangle = 0$.
- 5. Consider two measures m_1 , m_2 on $[0, \infty)$ equipped with its Borel sets; here m_1 is Lebesgue measure and m_2 has density e^{-x} . That is, for every Borel set E in $[0, \infty)$,

$$m_2(E) = \int_E e^{-x} dx.$$

Let M_j be the measure space $([0,\infty)$,Borel sets, m_j). Is there any containment relationship between $L^1(M_j)$ and $L^2(M_j)$? That is, either prove that

$$L^1(M_1) \subset L^2(M_1)$$
 or $L^2(M_1) \subset L^1(M_1)$

or give examples of functions in $L^2(M_1)\backslash L^1(M_1)$ and $L^1(M_1)\backslash L^2(M_1)$, and do the same thing with m_2 replacing m_1 .