PH.D. QUALIFYING EXAM REAL VARIABLES, 8 SEPTEMBER 2007

You have three hours. Solve any five problems. Credit will be given for the five best solutions. Show work.

Problem 1

- (a) Define the outer Lebesgue measure m^*A of $A \subset \mathbb{R}$.
- (b) Show that the outer measure m^* is σ -subadditive.
- (c) Prove that if $m^*A = 0$, then $m^*(A \cup B) = m^*B$.

Problem 2

Let f be a positive (a.e.) Lebesgue measurable function on \mathbb{R} , and let for $i = 0, \pm 1, \pm 2, \ldots$,

$$a_i = m\{x \in \mathbb{R} : 2^{i-1} < f(x) \le 2^i\},\$$

where m is the Lebesgue measure on \mathbb{R} . Show that f is integrable over \mathbb{R} if and only if $\sum_{i=-\infty}^{\infty} 2^i a_i < \infty$.

Problem 3

Show that if f is absolutely continuous on [a, b], then it is of bounded variation on [a, b].

Problem 4

Show that the Lebesgue space L^p , $1 \le p < \infty$, is complete. Here L^p is considered over the measure space $([0,1], \mathcal{M}, m)$.

Problem 5

Suppose (x_n) is a weakly convergent sequence in a Banach space \mathcal{B} .

- (a) Show that $||x_n||$ is bounded.
- (b) Suppose $K \subset \mathcal{B}$ is a compact set and $x_n \in K$ for all n. Show that (x_n) converges strongly and that its weak and strong limits are identical.

Problem 6

On l^p , $1 \le p < \infty$, consider the operator T, given by

$$T\left(x_{n}\right) = \left(y_{n}\right),$$

where

$$y_k = \frac{1}{k} x_{k+1}, \quad k \in \mathbb{N}.$$

- (a) Show that T is a bounded linear operator. Determine its norm.
- (b) Show that T is neither surjective nor injective. Prove that its range R(T) is dense in l^p .
- (c) Let S be the restriction of T to the closed subspace l_0^p of all sequences (x_n) in l^p such that $x_1 = 0$. Show that S is injective.
 - (d) Is the inverse of S bounded, closed?

Problem 7

Let (X, \mathcal{B}, μ) be a complete measure space and suppose that g is integrable with respect to μ . Define the map λ on the σ -algebra \mathcal{B} by

$$\lambda(E) = \int_E g \, d\mu.$$

Prove that λ is a signed measure and that

$$|\lambda|(E) = \int_E |g| d\mu \text{ for } E \in \mathcal{B}.$$

Problem 8

Suppose $f, g \in L^1(\mathbb{R})$. Show that the measurable function

$$F(x,y) = f(x-y) g(y)$$

belongs to $L^1(\mathbb{R}^2)$. Conclude that the integral

$$h(x) = \int_{-\infty}^{\infty} f(x - y) g(y) dy$$

exists for almost all $x \in \mathbb{R}$, that $h \in L^1(\mathbb{R})$, and that

$$||h||_1 \le ||f||_1 ||g||_1.$$

Note: You need not show that F is measurable.