PhD Qualifying Exam: Real Variables, Spring 2006

DEPARTMENT OF MATHEMATICAL SCIENCES THE UNIVERSITY OF MEMPHIS

January 21, 2006

Instructions: Solve any five problems. Credit will be given for the best five solutions.

Problem 1

Let $\langle f_n \rangle$ be a sequence of continuous, real-valued functions on a closed and bounded interval $I \subset \mathbb{R}$ such that for k > l,

$$f_k(x) \ge f_l(x)$$
 for all $x \in I$.

Prove: If $\langle f_n \rangle$ converges pointwise to a continuous function f on I, then $\langle f_n \rangle$ converges uniformly on I.

Problem 2

- (a) State the Hahn-Banach Theorem.
- (b) Show that there exists a bounded linear functional $\Lambda: L^{\infty}(0,1) \to \mathbb{R}$ of norm 1 such that $\Lambda f = 0$ for all $f \in C([0,1])$.
- (c) Show explicitly that there exists a bounded linear functional Λ on $L^{\infty}(0,1)$ for which no $g \in L^{1}(0,1)$ exists such that

$$\Lambda f = \int_{(0,1)} f g$$
 for every $f \in L^{\infty}(0,1)$.

Problem 3

- (a) State Fatou's Lemma and the Lebesgue Monotone Convergence Theorem.
- (b) Prove Fatou's Lemma using the Lebesgue Monotone Convergence Theorem.

Problem 4

- (a) State and prove Jensen's inequality.
- (b) Let $I \subset \mathbb{R}$ be an interval of finite, nonzero length and let $f \in L^1(\mathbb{R})$ be positive. Show that

$$m(I) \ln \left(\int_I f \right) \ge \int_I \ln f.$$

Problem 5

- (a) State the Radon-Nikodym Theorem.
- (b) Use the Radon-Nikodym Theorem to prove that any continuous, strictly increasing function $f:[a,b]\to\mathbb{R}$ which maps sets of measure zero to sets of measure zero is absolutely continuous.

Problem 6

Let $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$. Let \mathcal{F} be the linear map that associates to each $f \in L^1(-\pi, \pi)$ the sequence $\mathcal{F}(f) = \langle \hat{f}(k) \rangle_{k \in \mathbb{N}_0}$ of real numbers, given by

$$\hat{f}(k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \cos(kx) dx.$$

(a) Prove the Riemann-Lebesgue Lemma: $\lim_{k\to\infty} \hat{f}(k) = 0$ for every $f \in L^1(-\pi,\pi)$, and conclude that \mathcal{F} is a bounded linear operator from $L^1(-\pi,\pi)$ to c_0 , the Banach space of all sequences $\langle a_k \rangle_{k\in\mathbb{N}_0}$ of real numbers such that $\lim_{k\to\infty} a_k = 0$, with the supremum norm

$$\|\langle a_k \rangle_{k \in \mathbb{N}_0}\|_{\infty} = \sup\{|a_k| : k \in \mathbb{N}_0\}.$$

- (b) Show that $\mathcal{F}: L^1(-\pi,\pi) \to c_0$ is not one-to-one.
- (c) For $n \in \mathbb{N}_0$ let the functions $D_n \in L^1(-\pi, \pi)$ be defined by

$$D_n(x) = \frac{\sin\left(n + \frac{1}{2}\right)x}{\sin\frac{x}{2}}.$$

Show that

$$\lim_{n \to \infty} ||D_n||_1 = \infty$$

(Hint: $|\sin \frac{x}{2}| \leq |\frac{x}{2}|$). Conclude, using the Open Mapping Theorem, that \mathcal{F} is not onto. For this you may assume without proof that the restriction of \mathcal{F} to the subspace of all *even* functions in $L^1(-\pi,\pi)$ is one-to-one and that

$$\sup_{n} \|\mathcal{F}(D_n)\|_{\infty} < \infty.$$

Problem 7

Suppose $f, g \in L^1(\mathbb{R})$. Show that

$$\int_{\mathbb{R}} |f(x-y) g(y)| \, dy < \infty \quad \text{a.e.}$$

and that the function

$$h(x) = \int_{\mathbb{R}} f(x - y) g(y) dy$$

is integrable and satisfies

$$||h||_1 \le ||f||_1 ||g||_1.$$