PhD Qualifying Exam: Real Analysis

March 13th 2004

Solve **five** out of the seven problems. Show work. The exam lasts three hours.

- 1. Let S be a dense set of real numbers \mathbb{R} . Show that if f is an extended real-valued function defined on \mathbb{R} , such that $\{x: f(x) < \alpha\}$ is measurable for every $\alpha \in S$, then f is measurable.
- 2. Prove that $f(x) = \frac{\sin x}{x}$ is Riemann integrable but not Lebesgue integrable on $[1, \infty)$.
- 3. Define the sequence space ℓ^p as $\ell^p = \{\langle a_n \rangle : \sum_n |a_n|^p < \infty\}$, where $1 , and the norm on <math>\ell^p$ is given by by $\|\langle a_n \rangle\|_p = (\sum_n |a_n|^p)^{1/p}$. Let F be a linear and bounded functional defined on ℓ^p . Prove that there is a unique sequence $\langle b_n \rangle \in \ell^q$, where p, q are related by $\frac{1}{p} + \frac{1}{q} = 1$, such that $F(\langle a_n \rangle) = \sum_n a_n b_n$. What is $\|F\|$? Prove your claim.
- 4. If $E \subset \mathbb{R}$ is a Lebesgue measurable set with a finite measure, prove that for any given $\epsilon > 0$, there is a set U which is a finite union of intervals such that $m(U \triangle E) < \epsilon$. Here $U \triangle E = (U \sim E) \cup (E \sim U)$, where $A \sim B = \{x \in A : x \notin B\}$.
- 5. If $f, g \in L^1[0, 1]$ are positive functions on [0, 1] and $f(x)g(x) \ge 1$ for all $x \in [0, 1]$, then

$$\left(\int_0^1 f\right) \left(\int_0^1 g\right) \ge 1.$$

6. Let $C^{\infty}[0,1]$ denote the space of all functions $f:[0,1]\to\mathbb{R}$ continuously differentiable of all degrees. Let $C^{\infty}[0,1]$ be equipped with the norm

$$||f||_{\infty} = \max_{x \in [0,1]} |f(x)|.$$

Define the linear operator $A \colon C^{\infty}[0,1] \to C^{\infty}[0,1]$ as

$$Af(x) = f'(x), \qquad x \in [0, 1].$$

Show that A is unbounded but it has a closed graph. Is $C^{\infty}[0,1]$ under the norm $\|\cdot\|_{\infty}$, a Banach space?

7. State and prove the Lebesgue (Dominated) Convergence Theorem.