Algebra Ph.D. Qualifying Exam

January 2013

Answer any **five** of the following eight questions.

You should state clearly any general results you use.

- 1. Let p be prime and let S_n be the symmetric group of all permutations of $\{1, \ldots, n\}$.
 - (a) If n < 2p, show that any two subgroups of S_n of order p are conjugate.
 - (b) Show that (a) fails when $n \geq 2p$.
- 2. Show that for any prime p there are precisely two groups of order 2p up to isomorphism.
- 3. Recall that a ring R is *simple* if the only ideals of R are (0) and R.
 - (a) Show that a commutative ring is simple iff it is a field.
 - (b) Give an example **with proof** of a non-commutative simple ring that is not a division ring.
- 4. Let $\mathbb{Z}[i]$ be the ring of Gaussian integers.
 - (a) Show that 3 is prime in $\mathbb{Z}[i]$ but 5 is not.
 - (b) Show that, if a prime p in \mathbb{Z} is not prime in $\mathbb{Z}[i]$, then either p=2 or $p\equiv 1 \mod 4$.
- 5. Let L/K and K/F be (possibly infinite) algebraic field extensions. Prove that L/F is algebraic.
- 6. Let $\alpha = \sqrt{5 + \sqrt{5}}$. Show that $\mathbb{Q}(\alpha)/\mathbb{Q}$ is Galois, and that its Galois group is cyclic.
- 7. Let $R = \mathbb{R}[X, Y]$ and let I = (X, Y) be the ideal of R generated by X and Y.
 - (a) Is I a free $\mathbb{R}[X,Y]$ -module? Explain.
 - (b) Is I a free $\mathbb{R}[X]$ -module? Explain.
 - (c) Is I a free \mathbb{R} -module? Explain.
- 8. Let A be an $n \times n$ complex matrix with eigenvalues $\lambda_1, \ldots, \lambda_n$ (counted with multiplicity). Let $f(X) \in \mathbb{C}[X]$ be a polynomial. Show that the determinant of f(A) is $\prod f(\lambda_i)$.