Algebra Ph.D. Qualifying Exam

January 2012

Answer any **five** of the following eight questions.

You should state clearly any general results you use.

- 1. The exponent $\exp(G)$ of a group G is the smallest $k \geq 1$ such that $g^k = 1$ for all $g \in G$, or ∞ if no such k exists.
 - (a) Show that a finitely generated abelian group A with $\exp(A) < \infty$ is finite.
 - (b) Give an example of an infinite group of finite exponent.
 - (c) Give an example of a group G in which every element has finite order but $\exp(G) = \infty$.
- 2. Prove that any group of order 182 is solvable. (Note that $182 = 2 \cdot 7 \cdot 13$).
- 3. Let $i = \sqrt{-1} \in \mathbb{C}$ and let x be an indeterminate.
 - (a) Show that the three additive groups $\mathbb{Z} \times \mathbb{Z}$, $\mathbb{Z}[i]$, and $\mathbb{Z}[x]/(x^2)$ are all isomorphic to each other.
 - (b) Show that no two of the three rings $\mathbb{Z} \times \mathbb{Z}$, $\mathbb{Z}[i]$, and $\mathbb{Z}[x]/(x^2)$ are isomorphic to each other.
- 4. Let $R = \mathbb{R}[u, v]/(v^2 u^3)$ where u and v are indeterminants. You may assume that R is an integral domain.
 - (a) Show that $f(x) = X^2 u$ has a root in the field of fractions of R, but not in R.
 - (b) Deduce that R is not a unique factorization domain.
- 5. Let $f(X) = X^4 + 3X + 9$. For each of the following groups, either exhibit a prime p such that this group is isomorphic to the Galois group of f over \mathbb{F}_p , or explain why no such prime p exists.
 - (a) C_4 ,
 - (b) C_8 ,
 - (c) $C_2 \times C_2$.
- 6. Let $\mathbb{C}(t) = \{\frac{p(t)}{q(t)} : p, q \in \mathbb{C}[t], q \neq 0\}$ be the field of rational functions in the indeterminant t. Suppose $f(t) \in \mathbb{C}(t)$ satisfies f(t) = f(-1/t). Show that f(t) = g(t 1/t) for some $g(t) \in \mathbb{C}(t)$. [Hint: Let $\phi \colon \mathbb{C}(t) \to \mathbb{C}(t)$ be the automorphism that sends t to -1/t. What is the fixed field of $\mathbb{C}(t)$ under the group $\{1, \phi\}$?]

7. Let $T: \mathbb{Z}^3 \to \mathbb{Z}^3$ be the linear map given by

$$T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ -2 & 3 & 4 \\ 1 & 3 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Identify the group $\mathbb{Z}^3/\operatorname{im} T$ up to isomorphism.

8. Show that any $n \times n$ complex matrix A can be written in the form A = D + N where D is diagonalizable, N is nilpotent, and DN = ND. [Hint: for example

$$\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$