PhD Qualifying Exam: Algebra

September 11, 2010

Answer any **five** of the following **eight** questions. You should state clearly any general results you use.

- 1. Prove that the symmetric group S_n is a maximal subgroup of S_{n+1} , i.e., if $S_n \leq H \leq S_{n+1}$ then either $H = S_n$ or $H = S_{n+1}$. (Here we regard S_n as the subgroup of permutations in S_{n+1} that fix the element n+1.)
- 2. Let N be a normal subgroup of G and let C be a conjugacy class of G that is contained in N. Prove that if [G:N]=p is prime, then either C is a conjugacy class of N or C is a union of p distinct conjugacy classes of N.
- 3. Let R be a commutative ring with 1.
 - (a) Show that if M is a maximal ideal of R then M is a prime ideal of R.
 - (b) Give an example of a non-zero prime ideal in a ring R that is not a maximal ideal.
 - (c) Show that if R is finite then every prime ideal of R is a maximal ideal.
- 4. Let p be a prime and let R be the ring of all 2×2 matrices of the form

$$\begin{pmatrix} a & b \\ pb & a \end{pmatrix}$$

where $a, b \in \mathbb{Z}$. Prove that R is isomorphic to $\mathbb{Z}[\sqrt{p}]$.

5. Show that the extension $\mathbb{Q}(\sqrt{2+\sqrt{2}})/\mathbb{Q}$ is Galois, and describe its Galois group.

Please Turn Over.

- 6. An extension K of a field F of characteristic $p \neq 0$, is called *purely inseparable* extension if for each $\alpha \in K$ there is an integer t such that $\alpha^{p^t} \in F$. Show that every purely inseparable field extension is a normal extension.
- 7. Let $T: \mathbb{Z}^n \to \mathbb{Z}^n$ be a \mathbb{Z} -linear map whose matrix with respect to the standard basis of \mathbb{Z}^n is M. If det $M \neq 0$, show that $\mathbb{Z}^n/\mathrm{Im}(T)$ is a finite group of order $|\det M|$, where $\mathrm{Im}(T)$ is the image of the map T.
- 8. Let R be a commutative ring with 1 and let N and M be two R-modules. Prove that $N \otimes_R M \cong M \otimes_R N$.