PhD Qualifying Exam: Algebra

April 9, 2005

Answer any **five** of the following eight questions. You should state clearly any general results you use.

- 1. Suppose G is a finite group and K is a normal subgroup of G with gcd(|K|, [G:K]) = 1. Show that K is the unique subgroup of G of order |K|.
- 2. Show that there are no simple groups of order 30.
- 3. Let R be an integral domain. A non-zero non-unit element $s \in R$ is called special if for every $a \in R$ there exist $q, r \in R$ with a = qs + r and such that either r = 0 or r is a unit in R.
 - (a) If $s \in R$ is special, show that the principal ideal (s) is maximal.
 - (b) Show that every polynomial of degree 1 in $\mathbb{Q}[X]$ is special in $\mathbb{Q}[X]$.
 - (c) Prove that there are no special elements in $\mathbb{Z}[X]$.
- 4. Let F be a field and let $R = \{\sum_{i=0}^{n} a_i X^i : n \in \mathbb{N}, a_1 = 0\}$ be the subring of the polynomial ring F[X] consisting of all polynomials with X-coefficient equal to 0.
 - (a) Show that X^2 is irreducible but not prime in R.
 - (b) Show that the ideal of R consisting of all polynomials in R with constant term 0 is not principal.

- 5. Suppose $F \subseteq \mathbb{C}$ and F/\mathbb{Q} is a finite Galois extension with $Gal(F/\mathbb{Q})$ abelian. Let $\alpha \in F$ and assume $|\alpha| = 1$ where $|\alpha|$ is the absolute value of α considered as an element of \mathbb{C} .
 - (a) Show that F is closed under complex conjugation. [Hint: F/\mathbb{Q} is normal.]
 - (b) If $m_{\alpha}(X) \in \mathbb{Q}[X]$ is the minimal polynomial of α over \mathbb{Q} and β is another root of m_{α} , show that $|\beta| = 1$. [Hint: use (a) and $Gal(F/\mathbb{Q})$ abelian.]
 - (c) Writing $m_{\alpha}(X) = \sum_{i=0}^{n} a_i X^i$ show that $|a_i| \leq 2^n$.
 - (d) Deduce that F contains only finitely many α with $|\alpha| = 1$ and $m_{\alpha} \in \mathbb{Z}[X]$, and each of these is a root of unity.
- 6. Find the Galois group of $X^4 5X^2 + 6$ over
 - (a) \mathbb{F}_3 (the field with 3 elements),
 - (b) \mathbb{F}_5 (the field with 5 elements),
 - (c) \mathbb{Q} .
- 7. Let A be an 4×4 matrix with complex entries and suppose $A^3 = A^2$. List all the possible Jordan canonical forms for A, and in each case give both the minimal and characteristic polynomials of A.
- 8. Show that if A is a finite abelian group and $A \otimes_{\mathbb{Z}} (\mathbb{Z}/p\mathbb{Z}) = 0$ for all primes p, then A = 0. Does this result remain true if A is infinite? Explain.