PhD Qualifying Exam: Algebra

March 20th 2004

Answer any **five** of the following eight questions. You should state clearly any general results you use.

- 1. (a) Let G be a group and K a normal subgroup of G such that m = [G : K] is relatively prime to the order of K. Show that $K = \{x^m : x \in G\}$. [Hint: any element of K is in fact of the form x^m for some $x \in K$.]
 - (b) Give an example to show that this fails if K is not assumed to to be normal.
- 2. (a) If G is a finite group, $Z(G) = \{z \in G : zg = gz \text{ for all } g \in G\}$ is the center of G, and G/Z(G) is cyclic, show that G is abelian.
 - (b) If G is a group of order p^2n where $p \nmid n$, p prime, and G has a subgroup of order n that is contained in Z(G), show that G is abelian.
 - (c) Deduce that if G is a non-abelian group of order p^2q , where p and q are distinct primes, then Z(G) has order either 1 or p.
- 3. (a) Show that $I = (2, X^2 + 1)$ is not a prime ideal of $\mathbb{Z}[X]$.
 - (b) Find two prime ideals P_1 and P_2 of $\mathbb{Z}[X]$ with $0 \neq P_1 \subset I \subset P_2$.
- 4. Let R be a (not necessarily commutative) ring which contains a field K and assume R is finite dimensional as a vector space over K. If R has no zero divisors, show that R is a division ring (i.e., every non-zero element has a multiplicative inverse).
- 5. Suppose M/F is a finite Galois extension and K and L are two subfields of M containing F, with K/F Galois. Let KL be the compositum of K and L inside M, i.e., the smallest subfield of M containing both K and L.
 - (a) Show that KL/L is Galois.
 - (b) Show that [KL:L] divides [K:F].

- 6. Find the Galois group of $X^7 1$ over
 - (a) \mathbb{F}_2 ,
 - (b) \mathbb{Q} .
- 7. Suppose A and B are two $n \times n$ matrices with complex entries with the same minimal polynomials and the same characteristic polynomials.
 - (a) If n = 3 show that A and B are similar.
 - (b) Show that there are non-similar A and B with this property when n > 3.
- 8. Let A be a \mathbb{Z} -module and n a positive integer. Show that $(\mathbb{Z}/n\mathbb{Z}) \otimes_{\mathbb{Z}} A$ is isomorphic to A/nA.