Qualifying Exam: Algebra

Fall 2004

Answer any five of the following eight questions. Time allowed: 3 hours. You should state clearly any general results you use.

1. Let G be a finite group and let p be a prime. Let P be a Sylow p-subgroup of G. Let N_P be the normalizer of P (i.e. the set of $g \in G$ such that $gPg^{-1} = P$). Show that N_P is its own normalizer.

[Hint: First show that P is the unique p-Sylow subgroup of N_P .]

2. Let p be a prime and let L be a linear map $\mathbb{F}_p^n \to \mathbb{F}_p^n$. Suppose that $L^{p^k} = 1$ for some $k \geq 0$, where 1 is the identity map on \mathbb{F}_p^n . Show that there exists a non-zero vector $v \in \mathbb{F}_p^n$ such that L(v) = v.

[Hint: Consider the action of the group generated by L on \mathbb{F}_p^n .]

- 3. Let R be a commutative ring. An element a of R is called *nilpotent* if $a^n = 0$ for some $n \ge 1$. Show that the set of nilpotent elements of R forms an ideal.
- 4. Show that $\mathbb{Z}[X]$ is not a Principal Ideal Domain.
- 5. Let f be the polynomial $X^p X 1$ in the ring $\mathbb{F}_p[X]$. Let K be a splitting field for f and let α be a root of f in K. Let σ be the Frobenius automorphism of K, $\sigma(x) = x^p$.
 - (a) Show that $\{\alpha, \alpha + 1, \dots, \alpha + p 1\}$ is the set of roots of f.
 - (b) Show that $K = \mathbb{F}_p(\alpha)$.
 - (c) What is the order of σ ? (Hint consider $\sigma(\alpha)$).
 - (d) Show that f is irreducible.

- 6. For each of the following, indicate if they are true or false, giving a brief justification for your answer.
 - (a) There is a unique field with 36 elements.
 - (b) If [K : F] = n and f is an irreducible polynomial of degree m where gcd(m, n) = 1, then f has no roots in K.
 - (c) If L/K is a Galois extension and K/F is a Galois extension then L/F is a Galois extension.
 - (d) In a principal ideal domain, any irreducible element is prime.
- 7. Suppose R is a ring and A and B are two R-modules. Let $f: A \to B$ and $g: B \to A$ be two R-linear maps with $g \circ f = 1_A$. Show that $B \cong \operatorname{Im}(f) \oplus \operatorname{Ker}(g)$.
- 8. Let A be a 3×3 matrix with complex entries and assume $A^2 = 0$, but $A \neq 0$. Give, with justification, the Jordan Normal Form of A.