QUALIFYING EXAM (FALL 2000) ALGEBRA

Answer any six of the following eight questions. You must state clearly any general results you use.

- 1. Let G be a finite group and let p be the smallest prime factor of |G|. Show that any subgroup H of index p in G is normal in G.
- 2. Classify all groups of order $245 = 5.7^2$ up to isomorphism, stating clearly any results you use.
- 3. Let K be a field.
 - (a) Show that K[X] is a PID.
 - (b) Show that K[X,Y] is not a PID.
 - (c) Explain why both K[X] and K[X,Y] are UFDs, stating clearly any results that you use.
- 4. Let R be a commutative ring with 1 and let I be an ideal of R.
 - (a) Show that I is a maximal ideal if and only if R/I is a field.
 - (b) Show that I is a prime ideal if and only if R/I is an Integral Domain.
 - (c) Show that if I is maximal then I is prime.
 - (d) Show that if R is a PID and I is a non-zero prime ideal then I is maximal.
- 5. Let F be a field and let f(x) be an irreducible polynomial over F. Show that if K is a Galois extension of F then all the irreducible factors of f(x) in K[x] have the same degree.
- 6. Find the Galois group of $X^3 + X + 1$ over
 - (a) \mathbb{F}_2 (the field of 2 elements),
 - (b) \mathbb{F}_3 (the field of 3 elements),
 - (a) \mathbb{Q} .

State clearly any results you use.

- 7. Let R be a commutative ring with 1 with ideals I and J.
 - (a) Prove $R/I \otimes_R R/J \cong R/(I+J)$.
 - (b) Show that $R[X] \otimes_R R[X] \cong R[X]$ as R-modules. [Note: They are *not* isomorphic as R-algebras.]
- 8. Let A be an matrix over \mathbb{C} such that $A^3 = A$. Show that A is similar to a diagonal matrix.