Statistics Masters Comprehensive Exam

April 3, 2010

Student Name:	
o concern i contino.	

1. Answer 8 out of 12 problems. Mark the problems you selected in the following table.

Problem	1	2	3	4	5	6	7	8	9	10	11	12
Selected												
Scores												

- 2. Write your answer right after each problem selected, attach more pages if necessary. **Do not** write your answers on the back.
- 3. Assemble your work in right order and in the original problem order. (Including the ones that you do not select)

- 1. Suppose that the joint p.d.f. of two random variables X and Y is $f(x,y)=x+y, \quad 0 \leq x,y \leq 1.$
 - (a) Find the marginal p.d.f. of X.
 - (b) Find $P(2X + Y \le 1)$.
 - (c) Find the p.d.f. of Z = X + Y.

2. Let X and Y be two random variables with joint density

$$f(x,y) = \begin{cases} 1, & 0 < x < 1, 0 < y < 1 \\ 0, & \text{otherwise} \end{cases}$$

Define U = X + Y, V = X/(X + Y).

- (a) Find the the joint density of U and V.
- (b) Find the the marginal density of U.
- (c) Find the the marginal density of V.

3. Let $(X_1, X_2, X_3) \sim \text{Trinomial}(n, p_1, p_2, p_3)$, that is,

$$P(X_1 = x_1, X_2 = x_2, X_3 = x_3) = \frac{n!}{x_1! x_2! x_3!} p_1^{x_1} p_2^{x_2} p_3^{x_3},$$

where $p_3 = 1 - p_1 - p_2$, $x_3 = n - x_1 - x_2$, find $P(X_1 = k | X_3 = m)$.

- 4. Suppose $X_1, X_2, X_3, ... X_{64}$ be a random sample with a *beta* distribution with the p.d.f. f(x) = 2x, 0 < x < 1.
 - (a) Let Y be the number of these random variables $(X_i, i=1, 2, ..., 64)$ whose values less than 0.5. Approximate $P(Y \le 20)$.
 - (b) Approximate $P(\sum_{i=1}^{30} X_i > \sum_{i=31}^{64} X_i)$.

5. Let X_1, X_2, \dots, X_n be a random sample from a distribution with pmf

$$f(x) = \theta^x (1 - \theta)^{1-x}, x = 0, 1; 0 < \theta < 1.$$

Find UMVUEs for

- (a) θ
- (b) θ^2
- (c) $\theta(1-\theta)$.

6. Let X_1, \ldots, X_n be a random sample from a population with density

$$f(x|\theta) = \begin{cases} \left(\frac{\theta}{x}\right)^{\theta+1}, & \text{if } x > \theta \\ 0, & \text{if otherwise,} \end{cases}$$

where $\theta > 4$.

- (a) Find the maximum likelihood estimator (MLE) of θ^4 .
- (b) Is the above MLE a minimal sufficient statistics? Explain fully.

- 7. Let X_1, X_2 be independent random variables.
 - (a) If $X_1 \sim Poisson(5)$ and $X_2 \sim Poisson(2)$, find $P(X_1 = 1 | X_1 + X_2 = 2)$.
 - (b) If $X|\theta \sim Poisson(\theta)$ and $\theta \sim Gamma(\alpha, \beta)$, find $E(\theta^4|X=2)$.

8. Let X_1, \ldots, X_n be a random sample from a Bernoulli (θ) , and suppose we put a Beta (α, β) prior distribution on θ .

Find Bayes estimators of θ using loss functions

- (a) $L(\theta, a) = (\theta a)^2$
- (b) $L(\theta, a) = \frac{(\theta a)^2}{\theta(1 \theta)}$,
- (c) Show that with the second loss function, the MLE of θ is the Bayes estimator of θ , when $\alpha = \beta = 1$.

9. Let X_1, \ldots, X_n be a random sample from

$$f(x; \theta) = \begin{cases} \theta x^{\theta - 1} &, & \text{if } 0 < x < 1, \theta > 0, \\ 0 &, & \text{if otherwise,} \end{cases}$$

where $\theta > 1$.

- (a) Find MP test of size α for testing $H_0: \theta = 1$ vs. $H_0: \theta = 2$.
- (b) Find UMP test of size α for testing $H_0: \theta = 1$ vs. $H_0: \theta > 1$.
- (c) Obtain the power function and sketch its graph.

- 10. Let $\{X_1, \ldots, X_n\}$ be a random sample from the Bernoulli distribution with density $f(x,\theta) = \theta^x (1-\theta)^{1-x}, x = 0, 1$, where $0 < \theta < 1$. Let the density of the prior distribution be given by $P(\theta) \propto \theta^{a-1} (1-\theta)^{b-1}, 0 \le \theta \le 1$, where a > 0, b > 0.
 - (a) Given the loss function as $l(\theta, s) = (s \theta)^2$ for the estimator s of θ , derive the Bayese estimator of θ .
 - (b) Derive the maximum likelihood estimator (MLE) $\hat{\theta}$ of θ and compare the MLE with the Bayese estimator.

11. Let X_1, X_2, \dots, X_n be a random sample taken from the distribution with the p.d.f.

$$f(x; \theta) = 1/\theta \ x^{1/\theta - 1}, \quad 0 < x < 1, 0 < \theta < \infty.$$

- (a) Find the p.d.f. of $Y = -\ln X$, where X is a random variable with p.d.f. $f(x; \theta)$ given above.
- (b) Find the moment estimator of θ .
- (c) Find the maximum likelihood estimator of θ .
- (d) Find Rao-Cramér lower bound of any unbiased estimator $\hat{\theta}$ for θ .

- 12. Let $(X_1, Y_1), \ldots, (X_n, Y_n)$ be independently and identically distributed as (X, Y), where (X, Y) follows a bivariate normal distribution with means $EX = \mu_1$ and $EY = \mu_2$ and with the variances $Var(X) = \sigma_1^2$ and $Var(Y) = \sigma_2^2$ respectively. Assume that X is un-correlated with Y.
 - (a) Derive the likelihood ratio test (LRT) for testing $H_0: \sigma_1^2 = \sigma_2^2$ against the alternative hypothesis $H_1: \sigma_1^2 \neq \sigma_2^2$.
 - (b) Derive the probability distribution of your test statistic under H_1 . What is the power function of the LRT test?