Statistics Masters Comprehensive Exam

April 15, 2006

Student Name:	
O C CLOSECTE C T (CCTTTC)	

1. Answer 8 out of 12 problems. Mark the problems you selected in the following table.

Problem	1	2	3	4	5	6	7	8	9	10	11	12
Selected												
Scores												

- 2. Write your answer right after each problem selected, attach more pages if necessary.
- 3. Assemble your work in right order and in the original problem order.

- 1. Let X and Y be independent uniform(0,1) random variables.
 - (a) Compute $P(XY \le w)$ and find the pdf of W = XY.
 - (b) Find the joint pdf of W=XY and V=Y and then find the marginal pdf of W=XY.

- 2. The following questions are related to an experiment that n balls are distributed randomly in to 4 cells.
 - (a) Let n = 6, find the probability that at least one ball in each cell.
 - (b) Let n=5 and X_i be the number of cells containing exactly i balls, find the probability distribution of X_2 .

3. Let X be a random random variable from a binomial (n, θ) distribution

$$f(x|\theta) = \binom{n}{x} \theta^x (1-\theta)^{n-x}, \quad x = 0, 1, 2, \dots, n$$

and let θ follow a uniform prior pdf

$$\pi(\theta) = 1, \quad 0 < \theta < 1.$$

- (a) Find the posterior distribution of θ .
- (b) Find the Bayes estimator of θ under the following loss functions:

i.
$$L(\theta, a) = (\theta - a)^2$$
.

i.
$$L(\theta, a) = (\theta - a)^2$$
.
ii. $L(\theta, a) = \frac{(\theta - a)^2}{\theta(1 - \theta)}$.

4. Let X_i , $i=1,2,\cdots,n$ be a random sample from from the pdf

$$f(x;\theta) = 2\theta^2 x^{-3}, \quad 0 < \theta < x < \infty.$$

- (a) Show that $T = \min_{1 \le i \le n} X_i$ is a complete sufficient statistics for θ .
- (b) Find the method of moments estimator of θ .
- (c) Find the uniformly minimum variance unbiased estimator of θ .

5. Let X_i , $i=1,2,\cdots,n$ be iid random variables with $N(\mu,\sigma^2)$ distribution, where both μ and σ^2 are unknown. Derive the likelihood ratio test for $H_0: \mu=1$ vs. $H_1: \mu \neq 1$.

- 6. Let X be a continuous variable with distribution function F and let λ be a known parameter, such that $0 < \lambda < 1$.
 - (a) Prove that $\min\{\frac{F(X)}{\lambda}, \frac{1-F(X)}{1-\lambda}\}$ has a uniform distribution on (0,1).
 - (b) If $U \sim \text{Uniform}(0,1)$, and is independent of X, find $E(\min[\frac{F(X)}{U},\frac{1-F(X)}{1-U}])$

- 7. Let X_1, \ldots, X_n be independent random variables such that $X_i \sim Normal(\theta, \sigma^2/a_i)$, where a_i 's are known constants.
 - (a) Find the maximum likelihood estimator of θ and σ^2 .
 - (b) Are these estimates biased or unbiased? Fully justify your answer.

8. Let (X_1, \ldots, X_n) be a random sample from a population with parameter with density

$$f(x|\theta) = e^{-(x-\theta)}, \ x > \theta$$

We wish to test $H_0: \theta = 0$ versus $H_1: \theta > 0$. Consider a test which rejects H_0 when $X_{(1)} > C$, where $X_{(1)} = \min(X_1, \dots, X_n)$.

- (a) Find the value of C so that probability of type I error of this procedure is .05.
- (b) Find a uniformly most powerful test of these hypotheses at level of significance α .

- 9. Let $\{X_1, \ldots, X_n\}$ be independently and identically distributed normal variables with mean 0 and variance 1. Put $Y_1 = \frac{1}{n} \sum_{i=1}^n X_i$ and $Y_2 = \sum_{i=1}^n (X_i Y_1)^2$.
 - (a) Show that Y_1 and Y_2 are independently distributed of each other stochastically.
 - (b) What is the sampling distribution of Y_2 ?

- 10. Let $\{X_1,\ldots,X_n\}$ be a random sample from the density $f(x;\theta)=e^{-\theta}\theta^x/x!, x=0,1,\ldots,\infty,\theta>0.$
 - (a) Obtain a sufficient and complete statistic for θ .
 - (b) Derive the UMVUE (Uniformly Minimum Varianced and Unbiased estimator) of $P\{X=1\}.$

- 11. Let $\{X_1,\ldots,X_n\}$ be a random sample from the density $f(x;\theta)=\theta^{-1}e^{-x/\theta},0< x; f(x;\theta)=0,$ if $x\leq 0.$ $(\theta>0)$
 - (a) Derive the size- α UMP (Uniformly Most Powerful) test for testing $H_0: \theta = 1$ vs $H_1: \theta > 1$.
 - (b) Assume that the observed sample mean is 0.98 and n=20. Based on this observed data, obtain the p-value of your test. From on this analysis, what conclusions you will make?

12. Let $\{X_1, \ldots, X_{10}\}$ be a random sample from the normal density with mean μ and variance 1. Let the prior distribution of μ be given by $P(\mu) \propto e^{-\frac{1}{8}(\mu-2)^2}$, μ real.

Assume that the observed value of the sample mean is 1.5. Derive the .95 HPD (Highest Posterior Density) interval of μ .