Statistics Masters Comprehensive Exam

November 19, 2005

Student Name:	

1. Answer 8 out of 12 problems. Mark the problems you selected in the following table.

Problem	1	2	3	4	5	6	7	8	9	10	11	12
Selected												
Scores												

- 2. Write your answer right after each problem selected, attach more pages if necessary.
- 3. Assemble your work in right order and in the original problem order.

- 1. (a) Let X_1, \ldots, X_{36} be a random sample from a normal population with mean $\mu = 8$ and variance $\sigma^2 = 25$. Let $\bar{X} = \frac{X_1 + \ldots + X_{36}}{36}$ and let $S^2 = \sum_{i=1}^{36} (X_i \bar{X})^2/35$. Find $E(\bar{X}S^3)$.
 - (b) X_1, \ldots, X_{100} is a random sample from an Exponential population with mean 0.5. Find a such that $P(-a \le \bar{X} .5 \le a) = 0.975$.

2. Let X_1, \ldots, X_n be a random sample from with density

$$f(x; \mu, \sigma) = \frac{1}{\sigma} e^{-\frac{(x-\mu)}{\sigma}}, \quad x \ge \mu.$$

Find the MLE's of μ and σ .

3. Let X_1, \ldots, X_n be a random sample from with density

$$f(x;\theta) = \frac{3x^2}{\theta^3}, \quad 0 \le x \le \theta.$$

- (a) Find a Method of Moments estimator of θ^2 .
- (b) If $\theta \sim \mathcal{B}eta(2,1)$, find the posterior distribution of θ .

4. Let X_1, \ldots, X_n be a random sample from a $N(\mu, \sigma^2)$ population. Derive a likelihood ratio test for testing $H_0: \sigma^2 \leq \sigma_0^2$ against $H_1: \sigma^2 > \sigma_0^2$.

- 5. Suppose $X_1, X_2, X_3, \dots, X_{72}$ be a random sample with a distribution whose p.d.f. is f(x) = 2(1-x), 0 < x < 1.
 - (a) Find the (approximate) $P(\sum_{i=1}^{72} X_i < 28)$.
 - (b) Let $W = \min X_i$, a random variable representing the *minimum* value of $X_1, X_2, ..., X_{72}$. Find P(W < 0.05).

6. Let $X_1, X_2, X_3, \dots, X_n$ be a random sample taken from the distribution with the p.d.f.

$$f(x; \theta) = \theta \ x^{\theta-1}, \quad 0 < x < 1, 0 < \theta < \infty.$$

- (a) Find the maximum likelihood estimator of θ .
- (b) Find its asymptotic distribution of the MLE.

- 7. Suppose X_1, X_2 i. i. d. random variables with p.d.f. $f(x) = e^{-x}, x > 0$.
 - (a) Find the joint p.d.f. of $Y = X_1 + X_2$ and $Z = X_1 X_2$.
 - (b) Find the marginal p.d.f. of Z.

- 8. To test $H_0: p = 0.5$ against $H_1: p > 0.5$, we take a random sample of Bernoulli trials $X_1, X_2, X_3, \dots, X_n$ and use for our test statistic $Y = \sum_{i=1}^n X_i$. Let the critical region be defined by $C = \{y: y \geq c\}$.
 - (a) If n = 36 and c = 23, find the type I error probability.
 - (b) If n = 36 and c = 23, find the type II error probability when p = 0.8.
 - (c) Find the value c so that the type I error probability is about 0.01. $[z_{0.05} = 1.645, z_{0.025} = 1.960, z_{0.01} = 2.326, z_{0.005} = 2.576]$

- 9. Let $\{X_1, \ldots, X_4\}$ be independently and identically distributed normal variables with mean μ and variance σ^2 . Put $Y_1 = X_1 + X_2 + X_3$ and $Y_2 = X_2 + X_3 + X_4$.
 - (a) Obtain the joint probability density function (pdf) of (Y_1, Y_2) .
 - (b) What is the pdf of $Z = (Y_1 Y_2)^2$?

- 10. Let $\{X_1, \ldots, X_m\}$ be a random sample from the normal distribution with mean μ_1 and variance σ_1^2 and $\{Y_1, \ldots, Y_n\}$ a random sample from the normal distribution with mean μ_2 and variance σ_2^2 . Assume that the X_i 's are independently distributed of the Y_j 's. Put: $\bar{X} = \frac{1}{m} \sum_{i=1}^m X_i, \hat{\sigma}_1^2 = \frac{1}{m-1} \sum_{i=1}^m (X_i \bar{X})^2$, and $\bar{Y} = \frac{1}{n} \sum_{i=1}^n Y_i, \hat{\sigma}_2^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i \bar{Y})^2$.
 - (a) Define the random variable U by:

$$U = \{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)\} / \sqrt{\frac{\hat{\sigma}_1^2}{m} + \frac{\hat{\sigma}_2^2}{n}}.$$

Prove that if $\frac{\hat{\sigma}_1^2}{m} + \frac{\hat{\sigma}_2^2}{n}$ is distributed as $a\chi_b^2$, where (a > 0, b > 0) are constants, and where χ_b^2 is a central chi-square random variable with degrees of freedom b, then U is distributed as t_b where t_b is a central t random variable with degrees of freedom b.

(b) What are the values of a and b? (Note that a and b are functions of $(\sigma_i^2, i = 1, 2)$.

- 11. Let $\{X_1, \ldots, X_n\}$ be a random sample from the Poisson distribution with mean θ ($\theta > 0$).
 - (a) Obtain a sufficient and complete statistic for θ .
 - (b) Derive the UMVUE (Uniformly Minimum Varianced and Unbiased Estimator) of $\phi=e^{-\theta}.$

- 12. Let $\{X_1, \ldots, X_{16}\}$ be a random sample from the normal distribution with mean θ and variance 4. Consider the null hypothesis $H_0: \theta = 0$ versus the alternative hypothesis $H_1: \theta = 2$.
 - (a) Derive the size-0.025 MP (Most Powerful) test for testing H_0 vs H_1 .
 - (b) Assume that the observed sample mean is 2. Based on this observed data, obtain the p-value of your test. From this analysis, what conclusion you will make on H_0 ?
 - (c) Derive the power of your test.