Statistics Masters Comprehensive Exam

November 13, 2004

Student Name:	

1. Answer 8 out of 12 problems. Mark the problems you selected in the following table.

1	2	3	4	5	6	7	8	9	10	11	12

- 2. Write your answer right after each problem selected, attach more pages if necessary.
- 3. Assemble your work in right order and in the original problem order.

- 1. Let $\{X_1, \ldots, X_n\}$ be independently and identically distributed normal variables with mean 0 and variance 1. Put $Y_1 = \frac{1}{n} \sum_{i=1}^n X_i$ and $Y_2 = \sum_{i=1}^n (X_i Y_1)^2$.
 - (a) Show that Y_1 and Y_2 are independently distributed of each other.
 - (b) What is the sampling distribution of Y_2 ?

- 2. Let $\{X_1, \ldots, X_n\}$ be a random sample from the density $f(x; \theta) = \frac{1}{\theta_2 \theta_1}, \theta_1 < x < \theta_2$.
 - (a) Derive the MLE (Maximum Likelihood Estimator) $\hat{\theta}_1$ and $\hat{\theta}_2$ of θ_1 and θ_2 respectively.
 - (b) Show that the estimators from (a) form a set of sufficient and complete statistics for $\{\theta_1, \theta_2\}$?

- 3. Let $\{X_1,\ldots,X_n\}$ be a random sample from the density $f(x,\theta)=\theta^{-1}e^{-x/\theta},0< x; f(x,\theta)=0,$ if $x\leq 0.$
 - (a) Derive the size α UMP (Uniformly Most Powerful) test for testing $H_0: \theta = 1$ vs $H_1: \theta > 1$.
 - (b) Derive the power function of your test.
 - (c) Based on observed data $\{x_1, \ldots, x_n\}$, obtain the p- value of your test.

- 4. Let $\{X_1, \ldots, X_n\}$ be a random sample from the normal density with mean μ_1 and variance σ^2 . Let $\{Y_1, \ldots, Y_m\}$ be a random sample from the normal density with mean μ_2 and variance $4\sigma^2$.
 - (a) Derive the size α likelihood ratio test for testing $H_0: \mu_1 = \mu_2$ vs $H_1: \mu_1 \neq \mu_2$ when σ^2 is unknown.
 - (b) Derive the sampling distribution of the test statistic under H_0 .

- 5. Let X and Y be jointly distributed random variables. If $X|Y=y\sim Poisson(y)$, and $Y\sim Exponential(\lambda)$, where $E(Y)=1/\lambda$.
 - (a) Find the marginal distribution of X.
 - (b) Find $P(Y > a | X \le 1)$, where a is a constant.

6. Let $(X_1, X_2, X_3) \sim \text{Trinomial}(n, p_1, p_2, p_3)$, that is,

$$P(X_1 = x_1, X_2 = x_2, X_3 = x_3) = \frac{n!}{x_1! x_2! x_3!} p_1^{x_1} p_2^{x_2} p_3^{x_3},$$

where
$$p_3 = 1 - p_1 - p_2$$
, $X_3 = n - X_1 - X_2$, find $P(X_1 = k | X_1 + X_2 = m)$.

7. Consider a population with the following distribution: random variable with

You take a random sample of size 400 from the population. Let S denote the sample sum. Find b such that P(S>b)=0.975.

- 8. Let X_1, \ldots, X_n be a random sample from a Uniform $(2, \theta)$ distribution.
 - (a) Find the maximum likelihood estimator of θ .
 - (b) Is the MLE of θ a sufficient statistic for θ ?
 - (c) Is the MLE an unbiased estimator of θ ?

9. Let the joint distribution of X and Y be given as

$$f(x,y) = 2e^{-(x+y)}, \quad 0 < x < y < \infty.$$

- (a) Find the joint p.d.f. of X and X + Y.
- (b) Find the marginal p.d.f.s of X and X + Y.

- 10. Let X_1, X_2, \dots, X_n be a random sample from the Bernouli distribution, say $P(X = 1) = \theta$ and $P(X = 0) = 1 \theta$. We are interested in estimating $g(\theta) = \theta(1 \theta)$.
 - (a) Find the Cramer-Rao lower bound for the variance of unbiased estimators of $g(\theta)$.
 - (b) Find the UMVUE of $g(\theta)$, if such exists.

11. Let X_1, X_2, \dots, X_n be a random sample from

$$f(x|\theta) = \theta x^{\theta-1}, \quad 0 < x < 1, 0 < \theta.$$

Assume that the prior distribution of θ is given by

$$\pi(\theta) = \frac{1}{2}e^{-\theta/2}, \quad 0 < \theta.$$

- (a) Find the Bases estimator of θ using the square loss function $l(\theta, a) = (\theta a)^2$.
- (b) Find the Bases estimator of θ using the weighted square loss function $l(\theta,a)=\theta^2(\theta-a)^2.$

- 12. Let X_1, X_2, \dots, X_n be a random sample from $N(\mu, 1)$. We would like to test of H_0 : $\mu = 0$ vs. $H_1: \mu = 2$.
 - (a) Derive the most powerful test of level of significance $\alpha = 0.05$.
 - (b) Compute the required sample size n so that the test above has type II error probability of 0.1 when $H_1: \mu = 2$ is true.