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Project Objective

The objective of the University of Memphis (UoM) team has been to utilize neuropercolation
theory of the neuropil as a constructive method for developing a novel model of the intentional
action-perception cycle as a manifestation of the Physical Intelligence principle.

This work uses Walter Freeman’s neuroscience insights manifested in his hierarchical brain
model. The theory is studied using a thermodynamics-based random cellular automata model.
The proposed approach interprets intelligent behavior as a sequence of intermittent spatial
patterns, each of which provides a prediction of the future action to be taken, and which is
initiated and terminated by phase transitions in an open system. Each pattern is sustained by a
limit cycle attractor with symmetry breaking on close approach to the transition point and
restoration by synchronization-desynchronization effects in the spatio-temporal dynamics. The
model is expected to demonstrate emergent intelligence when implemented on a suitable
platform allowing a goal-oriented intentional system to interact continuously with its
environment.

Research Approach

* This project uses neuroscience insights manifested in Freeman’s hierarchical brain
model, the K sets, including KO0, KI, KII, and KIII.

* Our approach interprets intelligent behavior as a sequence of intermittent spatial patterns,
each of which provides a prediction of the future action to be taken.

* Spatial activity patterns in the cortex are separated by phase transitions between high-
dimensional (chaotic) and low-dimensional (liquid-like) dynamic states.

* Phase transitions are described using the neuropercolation model system based on
hierarchical random cellular automata that implement Freeman K-sets.



* The developed model is employed to demonstrate emergent intelligence when
implemented on a suitable platform allowing a goal-oriented intentional system to
interact continuously with its environment.

Team
The UoM team includes:
* Prof. Robert Kozma (PI), Prof. Paul Balister, and Prof. Bela Bollobas (also affiliated with
Cambridge University, UK),
* Prof. Marko Puljic (Tulane U) and Prof. Walter J Freeman (UC Berkeley) who act as
consultants to this project.

Achievement Statement
The research has been conducted according to the SOW in the following tasks:

Task 1.1. Theory and modeling of intentional action-perception cycles using hierarchical
dynamic models (until 5/2012).

Task 2.1. Basic models of structural evolution and learning in geometric random graphs
(until 5/2012).
Continued through tasks 1.6.1 and 1.6.2 (11/2012-12/2013).

Task 3.1. Develop tools for computational analysis of intentional dynamics (until 5/2012).
The planned goals have been accomplished in all task areas.
Major achievements

1.1.A Provided theoretical justification and detailed technical description for the four
components of the generalized Carnot cycle in brains operating far from equilibrium,
whereas metabolic energy is converted into meaningful action and knowledge as an open
thermodynamic system.

1.1.B Constructed hierarchical brain models following Freeman’s 10 basic principles of
neurodynamics. During the present project, we established the first five building blocks
of neurodynamics using neuropercolation model system.

2.1.A Established mathematical models for rigorous formulation of metastable, self-organized
critical dynamics on n-dimensional tori and conjectures about the onset of phase
transition dynamics in such models.

2.1.B Quantitatively characterized the evolution of the neuropercolation network parameters as
the function of rewiring in 2-dimensional KI lattices.

1.6.1A The conditions of the onset of critical states with large-scale synchronization of a narrow-
band carrier wave have been established in KII and KIII sets. This result is crucial for the



description of the system’s response to known stimuli, thus providing a robust and very
rapid recognition and recall of previously learnt input patterns.

1.6.1B Large-scale computer simulation methods have been conducted to describe structural
features of lattice graphs. Provided quantifiable statistical characterization of
heterogeneous random graphs and the generation of cell assemblies. Determined graph-
theoretical features such as mean path length and cliquisness.

1.6.1C In response to the feedback from DARPA project management, we intensified the
collaboration with other teams in the PI project. Worked with UCLA team on hardware
implementation of the neuropercolation model system on complex atomic switch array
(CASA) platform.

1.6.1D Employed KI level neuropercolation to interpret the dynamical behavior CASA array
with of Ag filaments, including the formation of metastable activity patterns due to phase
transitions at the Ag/Ag2S/Ag interface. Our studies indicate that input voltage level may
serve as a control parameter to drive the system toward sustained, self-organized critical
states.

1.6.1E Joint work has been conducted with SRI team members on evaluating scale-free behavior
of power spectra obtained for learning the T-maze problem.

1.6.1F Statistical properties of the neuropercolation model has been studied and linked to recent
developments in extreme and super-extreme catastrophes. Phase transitions in
neuropercolation models can be interpreted as Dragon Kings (DK), which go beyond
standard self-organized critical models.

1.6.1F Neuropercolation approach has been used for the description of spatio-temporal dynamics
in brains, including “Rich Club” (RC) structures, which we describe as “Pioneer
Neurons.” Competitive advantages of neuropercolation approach have been documented
in a comprehensive description of brain dynamics.

1.6.2A Neuropercolation models with various topological structures have been studied near the
critical state. Reinforcement learning with Hebbian correlational learning rule and also
habituation has been studied.

1.6.2B Learning effects have been studied in coupled oscillatory layers, modeling action-
perception dynamics. Without learning and in the absence of input patterns, broad-band
(chaotic) oscillations are observed at the control output. Following learning, specific
inputs generate narrow band oscillations indicating that the system recognized the learned
stimulus.

1.6.2C Successful learning has been demonstrated in neuropercolation model using various input
patterns. The trained system showed robust recognition performance for classification
problems under various operating conditions.



1.6.2D Documented drastic improvement in the clustering performance of data-processing

algorithms when using Hebbian learning in KllI-based cognitive filters as data
preprocessing devices.

novel model for the cognitive cycle has been described based on the re-analysis of
intracranial ECoG data from Freeman Neurophysiological Lab. We introduced well-
defined steps in the cognitive cycle and identified relevant statistical measures for their
quantitative characterization.

The following steps are defined for the characterization of the cognitive process: (i)
initial registration of the sensory stimuli (‘awe’ moment); (i1) chaotic exploration of the
memory landscape; (iii) recognition of the stimuli and decision making (‘aha’ moment);
(iv) integration of the new knowledge into the memory landscape; (v) and return to
background activity of alertness.



Task 1.1 Theory of Intentional Perception-Action as a Carnot Cycle (until 5/2012)
Task Outline

Establish the theory of the generalized Carnot cycle as the result of the unique properties of
the neuropil medium, by defining and plotting the four isoclines suggested by Dr. Freeman's far-
from-equilibrium thermodynamic model. In the model, the conventional coordinates of energy
and entropy are replaced by the time-dependent coordinates of the rate of change in entropy and
the rate of energy dissipation (power), and rate of loss of free energy.

Research Approach

We model the Action-Perception-Assimilation (APA) cycle as an open thermodynamic system
operating in interaction with the environment. Each APA cycle commences by a phase transition,
in which the immense population comprising each sensory cortex condenses from a gas-like state
to a liquid-like state. It concludes with return of the cortex to the expectant gas-like state. Carnot
used his diagram to estimate the work done in each cycle. We model the macroscopic
thermodynamics with the generalized Carnot cycle, in which the energy required for the
construction of knowledge is supplied by brain metabolism and is dissipated as heat by the
cerebral circulation.

A basic quantity analyzed is neurophysiological experiments is PSD(f) - power spectral density
function in frequency f determined using Fourier transform. We distinguish between temporal
frequency in Hz, PSDt(f), and spatial frequency in cycle/mm, PSDx(k). This distinction is
especially important in the spatial analysis of high density ECoG and EEG.

In addition to PSD, we use the analytic power as a measure of the rate of energy dissipation in
the subcritical, critical, and supercritical domains. Hilbert transform-based analytic signals are
useful in the case of nonstationary, non-Gaussian processes, as the ones observed in brains. The
instantaneous phase is a suitable measure to quantify transitions between synchronous and
nonsynchronous regimes. Such analysis allows direct comparison with experimental data on
brain dynamics.

Project Results

Experimental evidence is presented that the Carnot cycle with isothermal processes, coupled by
adiabatic cooling and heating, can be used to interpret the cognitive process. We postulate that
the action-perception-assimilation cycle comprises a sequence of consecutive Carnot cycles
required for perception, assimilation, and action, depending on the complexity of the cognitive
task at hand.

We subdivide the cognitive process in each burst into four stages. We used the area to index the
amount of knowledge created by each burst, see Fig. 1.

1. In stage 1-2 (binding and coherence): Conditioned stimulus carried by a microscopic
volley of action potentials from receptors ignites a mesoscopic Hebbian assembly that
generalizes input to a category of equivalent receptors, abstracts by removing irrelevant




detail, amplifies the volley, and selects a basin of attraction in cortical memory. The
binding in the assembly and the convergence to an attractor decrease the disorder and
entropy.

In stage 2-3 (condensation and transmission): The ignition of the Hebbian assembly
provides mesoscopic transition energy that initiates a macroscopic, spatially coherent burst
of oscillatory dendritic current that carries the spatial AM pattern. The low-density chaotic
activity governed by a point attractor and synaptic transmission undergoes a phase
transition by condensing to a high-density narrow-band activity that is governed by a limit
cycle attractor, shaped by synaptic transmission, and empowered by ephaptic
transmission. Masses of neurons are recruited in coherent subthreshold oscillations, so that
all neurons in the coherent domain can contribute their bits of information to the recalled
knowledge. The burst is not a representation of a stimulus; it is a complete memory of the
stimulus. The macroscopic pulse cloud shaping and shaped by the dendritic current field
down-samples the AM pattern, using time multiplexing and pulse density modulation in
cortical columns.

In stage 3-4 (uncoupling and decoherence): The cortex transmits the burst through a fan-
out-fan-in tract that performs a Gabor transform, which amplifies the coherent carrier,
attenuates all else as noise, and delocalizes the perceptual content. In this form the AM
patterns from all modalities can be integrated by linear matrix concatenation. Frequency
dispersion enhances disorder by interference due to phase dispersion.

In stage 4-1 (evaporation): Declining power due to recovery processes manifested in
refractory periods evaporates the signal after a duration that is proportional to the width of
the pass band. Extremely low values of analytic power appear at spatiotemporal points in
cinematic displays of the ECoG, indicating the presence of a singularity in cortical
dynamics that mediates the phase transition of neuropil from the liquid-like phase
governed by a limit cycle attractor to the gas-like phase governed by a point attractor.
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Figure 1. lllustration of the generalized Carnot cycle in the neuropil medium. The coordinates are
expressed in terms of two variables that can be measured using the ECoG. The squared analytic
amplitude measures the rate of energy change in the cortical tissue, while the distance between
consecutive amplitude modulated (AM) patterns measures the rate of change in the disorder.



Task 2.1 Mathematical modeling of the evolution and learning in geometric random graphs
and cellular automata (continued as Task 1.6.1 from 11/2012)

Task outline

Study geometric random graphs, the structure of which evolves in time. Start with modeling
single-layer networks corresponding to KI model. Implement various adaptation approaches to
modify the system behavior. Consider several evolution/learning rules at various time scales,
including the exponentially growing graph with scale-free properties, preferential attachment
rule, majority voting, as well as correlation learning rule (Hebbian), reinforcement, homeostatic
regulation, and others. Deliverables include mathematical description of the expected behavior of
evolving networks with select learning rules.

Research Approach using Neuropercolation Model System

Neuropercolation models are based on powerful tools of random graph theory to develop
rigorous models of brain networks. Neuropercolation incorporates cellular automata and
percolation theory in random graphs that are structured in accordance with cortical architectures.
Random graphs and percolation theory provide a suitable mathematical approach to describe
phase transitions and critical phenomena in large-scale networks.

Neuropercolation is a natural mathematical domain for modeling collective properties of
networks, especially near critical states, when the behavior of the system changes abruptly with
the variation of some control parameters. Critical parameters of neuropercolation include noise
(thermodynamic temperature), proportion of nonlocal connections (long axons), and proportion
of inhibitory units (negative feedback). In the analysis we rely on Binder’s finite-size scaling
theory, which has been used successfully to describe critical phenomena in statistical physics
domain.

Neuropercolation implements a hierarchy of cellular automata starting from single-layer 2D
lattices, to multi-layer models. The network hierarchy and corresponding dynamics implement
Freeman’s dynamic approach to brain operation and cognitive functions, specifically the 10
building blocks of neurodynamics. Building blocks 1-3 describe the emergence of non-zero
background activity and narrow-band oscillations in coupled systems with negative feedback.
Chaotic dynamics and intermittent large-scale synchronization are produced by two or more
coupled oscillators. If the connected oscillators with different frequencies cannot agree on a
common mode, yet cannot ignore each other, together they may generate broad-band chaotic
activity. In these systems, we identified four critical points which demarcate various dynamical
regimes, including chaos, and large-scale narrow-band synchronization states.

The above results have been used to interpret emergent synchrony in the cortical tissue. We
hypothesized that the aperiodic background state with is the manifestation of Freeman’s fourth
building block of neurodynamics and leads to the formation of metastable activity patterns. At
the same time, the large-scale synchrony with narrow-band bimodal, periodic oscillations can be
the indication of transitory regime initiated by the positive identification of a stimulus.



Project Results

1.

We modeled two basic operational modes of cortex.

— One mode describes quasi-stable amplitude modulation (AM) patterns, while the other
mode describes rapid transitions from a given AM pattern to another. We model
transitions in the 2D lattice representing the cortical layer as bootstrap percolation.

— We postulate that such percolation process is supported by a Hebbian neural assembly
selected by and corresponding to the given sensory input under the specific internal
dynamic state of the cortex. The quasi-stable AM oscillations may be modeled by
avalanche dynamics, manifesting self-organized criticality (SOC).

— These two basic operational modes interface through a critical transition point defined by
the onset of super-threshold oscillations. We hypothesize that the cumulative curvature
measure of clusters may act as an order parameter according to Haken slaving principle.
The curvature exceeding a critical value may enforce critical transitions as the function of
the random background noise level.

2. We studied properties of our exponentially expanding brain graph model (EEGm). The

concept we introduced on “Pioneer Neurons” (PN) sub-plates can be used for describing
developmental data on brains. Similar effects have been described as rich “Rich Club” (RC)
features. RC is a network property that happens when the hubs of a network, the nodes with
largest number of neighbors, are densely interconnected. We show that our EEGm model is
characterized by RC property due to the key role of pioneering neurons. In addition to RC
feature, the exponentially exploding brain model (EEGm) reflect important experimentally
observed properties of brain networks, including short processing paths, the existence of
massive parallel processing paths, and the emergence of hub structures with modular
architecture.

We studied the rapid propagation of phase gradients in the cortex and their cognitive
relevance. We introduced the hypothesis that phase dispersion over the hemisphere is the
manifestation of the cognitive broadcast as described in Baars’ Global Workspace Theory
(GWT). We demonstrated that intermittent synchronization in the neuropercolation model is
in accordance with experimental findings. Our ECoG experimental studies indicate that
phase desynchronization and the collapse of analytic amplitudes are associated by the ’aha’
effect of cognitive processing.

Power-law statistics became ubiquitous in analyzing extreme events in nature and society.
Neuropercolation model of cognition goes beyond self-organized criticality (SOC) and the
corresponding fundamental scale-free behaviors, due to the intermittent phase transitions
between gas-like and liquid-like dynamic states. Near critical brain states, we observe
intermittent desynchronization over large cortical areas for a short period. This is the period
of phase transition (PT), when large phase gradients travel rapidly across the cortex. Such
phase transitions are a way to interpret “Dragon King” (DK) effects in natural phenomena.



5. We introduced a link between phase transitions in neuropercolation and the concept of
"Dragon Kings." Dragon Kings were suggested to characterize extreme and super-extreme
events related to dynamical regimes beyond self-organized criticality (SOC). Neuronal
avalanches may belong to both SOC and super SOC categories. Neuropercolation model
system can contribute to the understanding of generating mechanisms of Dragon Kings in
general and to large activation clustering in neural systems, in particular, by using the
conceptual and mathematical framework of neuropercolation. Simulation results showed see
Fig. 2, the transition from self-organized critical regime to intermittent super-criticality.
Around the critical point we observe super-exponential increase in the size of the neural
activation clusters, which may indicate the emergence of dragon kings.
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Figure 2. Illustration of emergence of deviation from scale-free distributions, (a) critical
clustering in the neuropercolation model, where omega (describing noise effect) acts as a
control parameter, (b) distribution of flux with increasing oscillation frequency, for details, see
(Sornette, Quillon, 2012). Increasing deviation from scale-free distribution emerges towards the
large tails, as potential manifestations of Dragon Kings (supercritical regimes).

6. Statistical properties of the evolving graphs have been evaluated, including the mean path
length between two nodes, and cliquishness. To measure the cliquishness of a graph, first we
select a given node (v) and consider its neighbors (N(v)). We calculate the proportion of pairs
of neighbors of v that are themselves neighbors (C(v)). Finally, we calculate the average of
C(v) as v runs over all the vertices <C(v)>, which defines the cliquishness value. We studied
the mean path length and cliquishness as the function of the rewiring in the case of the KI
lattice graph in 2-dimensional lattice. The degree of rewiring is given by |R|/|V|, where |R|
and |V| stand for the number of vertices with an edge rewired and the total number of edges,
respectively. We conclude:
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The mean path length drastically decreases with a small level of rewiring. The
cliquishness, on the other hand, continuously decreases from its max value to 0 as the
rewiring increases. These statistical results are important for the learning in the
neuropercolation model when Hebbian assemblies are formed, which are expected to
have increased clustering and cliquishness, and decreased path length across the system.
In modeling cortex, clusters/cliques are postulated to form among sites selected by
stimulus inputs during learning, leading to the formation of Hebbian nerve cell assembles
in reinforcement learning, in accord with the rule: “neurons that fire together wire
together”. These are not small worlds; they are tightly coupled networks that amplify,
generalize and abstract over categories of input. We postulate that they also determine the
trajectory of cortical dynamics by directing it into the basin of an attractor, so that the
cortex generates an appropriate spatial AM pattern of a carrier wave.

7. The effects of rewiring have been studied quantitatively in the neuropercolation model. The
basic random graph with regular structure has nearest neighbor connectivity. We conclude:

In cortex the log density of connections falls with distance exponentially or with log
distance linearly. It may approximately conform to log-log, hence supporting scale-free
dynamics, which is an important clue for explaining how cortex sustains very long
correlation lengths and exceedingly rapid global phase transitions.

In small world random graphs and in neuropercolation simulations a small proportion of
nearest neighbor connection is replaced by long connections selected at random. A
proportion of long connections is clearly important in random graphs and equally so in
nonlinear cortical dynamics as the basis for rapid phase transitions to relatively enormous
domains of coherent oscillation.

The long connections do not lead to cliques by themselves. That would require breaking
of symmetry in the sense of departing from uniformity of spatial density distribution of
long connections. Cliquishness and clumping are to be imposed by learning. Clumping
implies only local increases in density with sequestration by diminution of connection
density. Long-range connectivity permits formation of widespread Hebbian cell
assemblies that enhance generalization over widely dispersed sensory inputs.

11



1.6.2 Mathematical modeling of learning in hierarchical geometric random graphs (starting
from 11/2012)

Task Outline

Extend the results obtained in Task 1.6.1 with the evolution of single-layered geometric graphs
to higher order, multi-layer networks. If needed, apply empirical methods to achieve quantifiable
results. Test the hypotheses about the presence of intermittently propagating phase gradients
during learning and recall, which correspond to experimentally observed cognitive activity and
decision-making. Deliverables include evaluation of the system behavior with and without
learning, quantification of learning effects and description of measurable spatio-temporal
correlates of intelligent behavior.

Research Approach

We have conducted massive computational simulations using random cellular automata models.
We developed methods to evaluate the system state with respect to criticality by generalizing
Binder’s criterion using 4"-order cumulants based on finite-size scaling theory. The task requires
very significant computational efforts, thus computing efficiency is critical. In order to achieve
the required statistical accuracy for Binder finite-size scaling theory, we need to calculate 100
points for varying parameter value (noise), and each point is evaluated following at least
20,000,000 iterations. Most of our computations are executed on the UoM massive parallel
computing facility, where we use the maximum allowed computational power. In the Spring
2013, we finally had access to DoD HPC facilities. Due to the summer maintenance and the
termination of our project, we were not able to benefit from this additional computational
opportunity in the present project ending December 2013.

Project Results
Oscillator Created by Interacting Excitatory and Inhibitory Neuropercolation Layers (KII)

1. Broad-band activity with 1/f*a power spectra is observed for unlearnt conditions. On the
other hand, Hebbian learning results in the onset of narrow-band oscillations indicating the
selection of specific learnt inputs; see Fig. 3. These observations demonstrate the required
properties according to Freeman’s building blocks of neurodynamics.

2. We determined boundaries of large-scale synchronization domains with narrow-band
oscillations; for the illustration of the dynamics of the synchronized state. The large-scale,
intermittent, narrow-band synchronization is characteristic of a metastable system at the edge
of criticality, when input-induced or spontaneous transitions can destabilize the chaotic basal
state and push it to a quasi-limit cycle oscillatory regime. Our results indicate that the
introduced Hebbian learning effect can be used to identify and classify inputs, and potentially
using it for pole balancing control task.

12
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Figure 3. Illustration of the dynamic state with narrow-band, synchronous oscillations; left plot
shows time traces of activity (a) for the ensemble average (solid line), and channel #17 (dash);
right plot is the Power spectrum showing a prominent oscillation frequency (approx. 10 Hz in
this simulation).

Two interacting Oscillators (KIII simple version)

3. We modeled two interacting oscillators, which correspond to different cortical areas. We
studied the influence of various parameters on the critical behavior of this coupled system,
including noise level, proportion of non-local connections after rewiring some local links,
strength of inhibition, and strength of connections between cortical areas. In the KIII model,
multiple critical points are found, which demarcate various dynamic regimes, such as
unimodal (paramagnetic) state, bimodal large-scale synchronization, multimodal broad-band
(chaotic) oscillations, mixed broad- and narrow-band regimes.

4. In the system with two oscillators, there are four critical points ®y<w;<m,<®3<w3,
corresponding to decreasing noise levels (0=0 is very high noise and ®=1 means no noise).
When w<wmy, aggregate activation distribution is uni-modal (1) and shows paramagnetic
regime. When oo<ow<w;, the oscillators exhibit large-scale synchronization and the activation
distribution is bi-modal (2). When o;<o<w,, the two coupled oscillators with different
frequencies cannot agree on a common mode, so together they generate aperiodic
background activity (chaos). When w;<w<wj;, only one oscillator oscillates in a narrow band
and the activation distribution is okta-modal (8). For ®>ws neither oscillator oscillates and
activation distribution is a hexa-modal (16) describing a ferromagnetic state.

5. These results are illustrated in Fig. 4 using Binder finite-size scaling theory for critical

analysis. According the Binder’s statistical theory, the intersection point of statistical
moments (in our case 4™ moments) calculated for various system sizes (96x96 and 120x120)
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give the critical states with size invariance. In Fig. 4, the various regimes are indicated:
paramagnetic (leftmost), large-scale synchrony (white bar), intermittent chaos (black), okta-
modal (gray), and ferromagnetic (rightmost) region, respectively.
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Fig. 4.:1llustration of the identified synchronization regimes for coupled oscillators. Oscillator A
is coupled with 2.5% edges (top display), while oscillator B is with 3.75% edges (bottom plot).
Five different regimes have been identified from left to right: paramagnetic, synchronous
bimodal, chaotic intermittent, okta-modal, and ferromagnetic with hexa-modal distribution
functions, respectively. Solid curves indicate coupled lattices of size 96x96, while dotted lines
stand for lattice size 120x120.

The above results have been used to interpret emergent synchrony in the cortical tissue. We
hypothesize that the aperiodic background state with ®;<w<w, is the manifestation of the
fourth building block of neurodynamics and leads to the formation of metastable activity
patterns. At the same time, the large-scale synchrony with narrow-band bimodal, periodic
oscillations can be the indication of transitory regime initiated by the positive identification
of a stimulus by a Hebbian assembly.

Three Interacting Oscillators (Complete KIII)

7. We studied the model of 3 interacting oscillator layers, inspired by the olfactory system. This

model uses input (odor) distributed on the input layer and scalar output (classified odor). In
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the basal mode without learning, the 3 double layers can generate broad-band chaotic
oscillations, see Figs. 5b and 5d; where (d) is zoomed in version of (b). The spikes in Fig. 5a
& 5c indicate the presence of input signals. Inputs have been implemented by flipping 5% of
the input layer nodes to state ‘1’ (active) for the duration of 20 iteration steps. During the
Hebbian correlation learning stage, inputs are introduced 40 times (20 steps each), at regular
intervals of 500 iteration steps. Without learning, the activity returns to the low-level chaotic
state soon after the input ceases.

8. Figure 6 shows the effect of learning. Learning has been maintained during the 20 step
periods when input was introduced. We use Hebbian learning, i.e., the weight from node i to
node j is incrementally increased if these two nodes have the same state (1-1 or 0-0). The
weight from i to j incrementally decreases if the two nodes have different activations (0-1 or
1-0). Fig. 6a shows that a narrow-band oscillation becomes prominent during learning, when
a specific input is presented. After learning, the oscillatory behavior of the lattice dynamics is
more prominent, even without input, but the learnt input elicits much more significant
oscillations. This is the manifestation of the 6™ and 7™ principles of Freeman’s
neurodynamics, and it can be used to implement classification and control tasks.
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Figure 5. Activity levels without learning; first row contains (a) and (b) plots, 2" row (c) and
(d). Input spike is shown at every 500 steps. The activity returns to base level after the input
ceases.
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Figure 7. PSD functions without learning (first column) and with learning (second column).
Without learning the PSD has scale-free, 1/f"a shape. Prominent narrow-band oscillations are
observed as the result of learning. This spectral effect can be used to quantify the learning effect
and use it for controlling the balance of the input.

9. We implemented and tested learning algorithms (Hebbian and habituation) in
neuropercolation models with various input patterns. Present evaluations are based on
average activation level in the output patterns. This is illustrated in Fig. 8, where the time
evolution of the average activation (a_G) is shown during learning and testing of Input
Patterns 0 and 1, respectively. There is a consistent and quantifiable increase in average
activity for the learnt pattern 0.
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Figure 8. Time evolution of learning and testing input patterns in the neuropercolation model;
here a_G shows the average activity level across the array. The input patterns include stripes of
various orientations to demonstrate the classification ability of the trained system.

10. We developed quantitative measures to evaluate the performance of the hierarchical KIII
model, and demonstrated significant advantages regarding stability indices of clustering
algorithms. We used KIII as a cognitive filter before applying a range of clustering
algorithms, including self-organized maps, k-means, hierarchical, model-based and other
clustering. The clustering results have been evaluated using a range of validation indices,
including stability, external, and internal index measures. The main results are summarized
as follows:

— KIII shows very significant improvement (50% improvement or more, in average) in
classification performance using stability indices, including average distance between
means, figure of merit, average proportion of overlap.

— KIII can be employed as a data filter to transform the input information into an
integrated data format, in which the various attributes develop mutual dependence
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and demonstrate distributed representation of the inputs in a more robust, distributed
format.

In addition, the first two principal components after KIII filtering contain 82% of data
variance in average for the used datasets, which points to the possibility of more
efficient encoding of data using KIII processing.
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Neuropercolation Model System Implementations on CASA Hardware Platform

Goal of the Effort

In concert with UCLA/CASA team, efforts have been made to implement neuropercolation
model on CASA hardware domain. The work focuses on the implementation of basic single-
layer, homogeneous (KI) neuropercolation model by CASA. Progress has been made in
understanding the behavior of the CASA layer by determining characteristic temporal and spatial
scales and transfer characteristics based on data readouts from the existing devices by 2x2 and
4x4 electrodes. Data are of courtesy UCLA/CASA Lab, discussions with Jim Gimzewski, Adam
Stieg, Henry Sillin, Brian Shieh, Odo Avizienis are appreciated.

Research Approach

We analyzed the experimental data obtained on CASA Atomic Switch network platform, Bi50-
500, over 4x4 arrays. In the experiments, 1V potential was applied at electrode #15 for 20 ms,
followed by 80 ms resting period, and this cycle repeated for an extended time period. The
complete time series contained active and inactive periods, while the ‘trimmed’ time series
included only the 20ms active segments concatenated into a continuous series, i.e., the inactive
segments have been trimmed. Current readout is from electrode #7, sampling frequency is
10,000 Hz. Step-by-step incremental current (delta-I) has been analyzed.

Project Results
1. The results obtained for the probability distribution function histograms are given in Fig. 9.

— There is a scale-free general behavior over the range of 10"{-3} to 10"{-1) delta-I values.
At low delta-1 values (below ~0.002), the slope decreases and there is a significant
deviation between trimmed and untrimmed cases. The trimmed-out segments describe the
background noise at basal state (without feeding Voltage), which is concentrated at small
delta-I increments. This result also seems justifying the threshold of 0.002 used in CASA
files to determine the transition to metastable states.

— The red histogram (full signal) has prominent peaks at delta-1 ~ 0.2-0.4, while the blue
(trimmed curve) has a peak at ~0.1-0.2. There is an additional peak in the red histogram
at 0.07-0.09. The red peak at 0.2-0.4 is due to the jumps between the 20ms active and 80
ms inactive periods. This peak is eliminated in the blue curve by trimming the basal state
time segments. The blue peak at 0.1-0.2 is added in the trimmed curves by gluing
together the 20ms segments, which do not exactly match at start/begin.
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Figure 9. Histogram of the Bi50-500 4x4 array current measured on channel #7. The histogram
is determined for the delta current step-by-step change. Red curve shows the total time series,
blue curve is the concatenation of the active (20ms) periods, by trimming the 80ms resting
periods.

2. We performed statistical analysis of the distribution of the metastable current state levels.
Results are as follows: The histogram of the levels of metastable states shows two prominent
peaks, at 12-13 uA and 22-28 uA, respectively. There are some less prominent peaks at 30-32
uA and 40-44 uA. There is a broad tail of the histogram until about 100 uA. The two main
peaks show the existence of the metastable states. It may be the superposition of several
Gaussians, or overlaying Poisson distributions. The width of the peaks is about 5 uA, which
is much larger that the thermal background noise. Thus the multi-modal distributions are
essential features of the dynamics, much above the background level.

3. We conducted neuropercolation simulations to model the growth of the connectivity in the
CASA system with constant or periodic input perturbations. In these models, the noise level
1s maintained constant while the connectivity increases, to simulate CASA connectivity
growth (increasing neighborhood size). Phase transition is clearly identified at neighborhood
size of ~16-18 from low magnetization to high magnetization regimes. Phase transitions
between highly-organized (ferromagnetic, liquid-like) and less organized (paramagnetic,
gaseous-like) states in neuropercolation seem to be feasible interpretations of the transition
between “soft” and “hard” switches in ULCA’s ASN; see (Avizienis et al, 2012) for details.
Neuropercolation shows how input induces switch in the dynamics, as the operational regime
has been adjusted to be near the percolation transition threshold, thus a small input
perturbation (produced by learnt stimulus) creates a transition. At the same time no transition
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occurs for a perturbation of similar (weak) magnitude, which was not learnt. It is therefore
suggested to operate ASN at the boundary between “hard’ and ‘soft’ switch regimes.

We analyzed CASA experiments with single-channel recording at various current levels.
Examples of amplitude distributions are shown in Fig. 10 for various current levels. The
distributions approximate a scale-free behavior except for small voltage values (0.4 V).

log(# of Occurrence)

log(Current)

Figure 10. The normalized frequency of occurrence is shown on the vertical axis, during CASA
single-channel experiments, the driving voltage levels: red — 0.4V, black — 2.75V, green — 6V,
magenta — 7V.

Discussion on the relationship between neuropercolation and CASA/ASN platform

Network structure: CASA is remarkably appropriate for modeling the topology of cortex as a
2-D planar array of neuropil as distinct from a neural network. Neuropil consists in an
exceedingly dense fabric of randomly oriented fibers in the plane having a power-law
distribution of connection density with connection distance. The cell bodies are essential for
neuropil formation, just as are the copper posts in CASA formation, but along with glia play
only secondary supportive roles in system dynamics. The module for modeling state
variables is not the neuron but the local matrix of connections. CASA has the option of high
density of posts and comparably high density of available contacts among fibers.
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Readout: The output of the neuropil is spatially coarse-grained and down-sampled by deep
pyramidal cells that perform local spatiotemporal integration over the matrix of superficial
pyramidal cells. CASA simulates this neural operation by sampling electrodes placed at
spatial intervals in an array near the center of the CASA chip. We have not yet set up a
protocol for evaluated the spacing, number and especially the diameters of sampling
electrodes needed to perform optimally the spatiotemporal integration required for readout.

Contact barriers, synapses: The sulphurization giving the Ag,S creates a variable resistor
metal-insulator-metal junction (MIM) that is comparable to the relations among neural axons
and dendrites in neuropil. Interactions are therefore more likely to be characterized as
ephaptic rather than synaptic. The read-out by each sampling electrode appears to be
comparable to the operation of local populations of ~10"4 deep pyramidal cells that time-
multiplex their action potentials, giving a pulse density for output that is suitable for
transmission to simulated synapses in read-out neural networks. Some assay is needed of the
density of MIM connections with respect to the diameter and spacing of the sampling
electrodes.

Bistability: The MIM at the microscopic level has two states: a low conductance state with a
crystalline structure characterized as acanthite between Ag surfaces and a high conductance
state by a factor ~1076 characterized as argentite. At the macroscopic level of observation the
two states are characterized as phases. The phase transitions have the memristive property of
pinched hysteresis. The phase transition is in two steps. First, under the application of a
voltage difference across the MIM, the Ag aligns into filaments, one of which will form a
metallic link across the gap. The resulting jump in current triggers the phase transition from
the insulating clumped Ag;S to a body-centered cubic matrix that gives the macroscopic
current surge. This phase transition matches well with the phase transition in cortex in two
stages. First is the activation of a Hebbian assembly by a learned conditioned stimulus, which
ignites the vigorous firing of a dedicated mesoscopic network that provides the transition
energy required for a macroscopic transition of the cortical neuropil from a low-density gas-
like phase to a high-density liquid-like phase in perception.

Kle Implementation and Background Activity: The discovery of the possible correspondence
between phase transitions between bistable states in Kle and CASA may prove to be of major
importance in guiding the work of implementing the Kle set on CASA. The Kle set and
CASA both have the property of silence (the 'open loop' state) at rest and oscillatory activity
under dc excitatory bias. However, when the connectivity is sufficiently dense the Kle set
gives self-sustained, self-regulated background activity that is essential for criticality and the
capacity for phase transition. CASA at present lacks the capacity for self-sustained intrinsic
background activity. This capacity may be inherent in the high range of the V-I function that
UCLA now proposes to explore, in search of factors that intrinsically limit the dynamic range
of function short of irreversible damage to CASA. Exploration of the upper range will
require refinement in the test input in perturbation. The optimum test input for brain research
is the impulse (the Dirac delta function). It is essential for evaluation of the temporal and
spatial scaling of the CASA for modeling in terms use for modeling K-sets.

Thermodynamic properties: The UCLA group has displayed a map of the spatial temperature
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variations of the chip during maintenance of a metastable pattern of activity. This measure
may open a valuable path to modeling the phase transition using the temperature-dependent
Ginzburg-Landau equation. This experimental approach is expensive for the requisite
imaging equipment, so it would have to be justified first by detailed mapping of the spatial
patterns of the analytic power of active states, followed by a theoretical prediction of the
spatial patterns of temperature to be sought.

— Conclusions on CASA/ASN and neuropercolation

* The chief asset of CASA is its capacity to simulate the property of ephaptic transmission
in cortical neuropil, by which a high energy density is achieved that incorporates the
entire chip into transiently coherent oscillation that carries an image with high
information content, a complex associative retrieved memory.

* Clumping and clustering may occur intrinsically and at random in ASN, so we may have
to deal with it, either stationary of time varying, or both. The mean path length and
clustering coefficient are likely to become useful when we have achieved spatial analysis
and learning capability, so we should define these properties of random graphs at present
in respect to dealing with spatial irregularities inherent in the ASN.

* Learning will require methods for selectively increasing, decreasing or deleting point
connections that impose clustering onto the random ASN. Modifiable connections and a
mechanism corresponding to reinforcement learning in ASN will be the basis for memory
storage. In K-sets the modifiable connections are only among the excitatory cells, so that
NP for the Kle-set may profitably be applied to ASN as models cortical dynamics.

Collaboration with the SRI team in PI

Metastable cognitive states can be approximated as self-organized criticality (SOC), with
possible transitions between various memory-states. Machine learning tools provided by SRI
team are very useful to characterize these states and provide a meaningful readout for external
use, e.g., classification, and control. At the same time, neuropercolation can provide the initial
conditions for the various metastable states to be processed by reservoir computing tools.

We worked on evaluating the scale-free features of the power spectral density functions obtained
by reservoir computing (RC) simulations during the T maze learning problem. Based on
statistical considerations, we modified parameters of the evaluation algorithm. As a result, scale-
free behavior is observed with changing slope across a range of coupling parameter b. Figure 11
illustrates power spectra as the function of b, demonstrating spectra with varying slopes as b
changes.
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navigation experiments; b is the couple parameter (figure is the result of joint work with J Wang
and R Rohwer, SRI).
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Task 3.1. Develop tools for the analysis of the spatio-temporal dynamics (until 5/2012)
Task outline

Analysis of 2D Random Cellular Automata at various critical conditions corresponds to
Freeman’s 10 building blocks of neurodynamics. Blocks 1-3 have been implemented earlier.
This task focuses on block #4 showing chaotic oscillations and intermittent large-scale
synchronization. Study clustering and synchronization measures in a wide range of operating
conditions in coupled oscillators.

Research Approach

Spatio-temporal neurodynamics in brains is modeled by Freeman K sets, which form a hierarchy
for cell assemblies with the following elements:

* KO sets represent non-interactive collections of neurons with globally common inputs
and outputs: excitatory in KOe sets and inhibitory in KOi sets. The KO set is the module
for K-sets.

* KI sets are made of a pair of interacting KO sets, both either excitatory or inhibitory in
positive feedback. The interaction of KOe sets gives excitatory bias; that of KOi sets
sharpens input signals.

* KII sets are made of a Kle set interacting with a Kli set in negative feedback giving
oscillations in the gamma and high beta range (20-80 Hz). Examples include the olfactory
bulb and the prepyriform cortex.

* KIII sets made up of multiple interacting KII sets. Examples include the olfactory system
and the hippocampal system. These systems can learn representations and do match-
mismatch processing exponentially fast by exploiting chaos.

* KIV sets made up of interacting KIII sets are used to model navigation by the limbic
system.

* KV sets are proposed to model the scale-free dynamics of neocortex operating on and
above KIV sets in mammalian cognition.

In this project task, Freeman sets of hierarchy levels KO-KIII are applied for the analysis of
ECoG experiments in animals and humans.

Project Results

1. According to our model, sensory stimuli are manifested in the neocortex through the creation
of the knowledge necessary for intentional behavior and decision making. These results are
interpreted through the concept of pragmatic information, which is complementary to the

Shannon entropy Index.

2. We identified large-scale synchronization across broad frequency bands, indicating the
construction of knowledge and meaning from input sensory data and leading to awareness
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experience. Below are the steps of the cognitive process (with times given with respect to the
post-stimulus period):

e Stepl(0-0.15):
Initial impression in response to sensory stimuli, which is termed the “Awe” moment.
This stage is characterized by high synchronization and low amplitudes across distributed
cortical regions.

e Step2 (0.1 -0.35):
Chaotic Exploration of memory traces with highly distributed and desynchronized
patterns. The amplitude patterns drop dramatically in some regions, also called as “null
spike.”

e Step 3 (0.3-0.45 s):
Recognition/identification of the searched clue/decision and it can be termed the “Aha”
moment. During “aha” moments there is a tendency towards synchronization and the
emergence of metastable amplitude patterns.

e Step 4 (0.45—0.6s):
Next is the stage of integration of the new knowledge in a chaotic dynamic process.
Chaotic integration is characterized by strong and widespread “null spikes” as well as the
consistent rise in amplitudes.

e Step 5(0.6-0.9 s):
Finally there is a dramatic drop in the indices toward the end of the post-stimulus brain
activity, showing a return to the usual, background level.
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4. Meetings and additional deliverables (9)

* Attending PI Re-launch meeting at HRL, Malibu, CA, October 9-10, 2012.

* Attending experiment-theory implementation lab visits at UCLA, Gimzewski/CASA
team and UCB/WJFreeman, November 28- December 1, 2012.

* Participating at DARPA teleconferencing with DARPA managers and PI team members,
December 6, 2012.

* Special Session organized at Int. Conf. on Cognitive Neurodynamics: "Advanced Models
of Cortical Dynamics in Perception," W.J. Freeman (organizer), R. Kozma, R. Quiroga,
G. Vitiello (invited speakers), Signtuna, Sweden, June 23-27, 2013.

* Project meeting on January 30, 2013 at UCB with the participation of U of Memphis (R.
Kozma) with PI team members from UCB (W.J. Freeman), and UCLA (J. Gimzewski, A.
Stieg, H. Sillin).

* Preparation of PI project Memephis April 11-12, 2013, in Memphis with representatives
of all contributing teams.

e April 11-12, 2013: Physical Intelligence Team Meeting hosted by R. Kozma, at the
University of Memphis. 8§ team members from HRL, UCLA, SRI, and U of Memphis
attended the 2-day meeting in preparation for the upcoming program review at HRL.
http://clion.memphis.edu/events/darpa-pi-2013/.

* April 29-30: Attending Physical Intelligence Program Review Meeting at HRL and
presenting results by the neuropercolation team.

* Attending DARPA teleconferencing for the Physical Intelligence Program, Phase II,
Program Review, July 16, 2013.
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