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I. Research Personnel 
 
Principal Investigator (PI):    
Robert Kozma (Division of Computer Science, University of Memphis)  
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Stan Franklin (Division of Computer Science, University of Memphis) 
Walter J. Freeman (Division of Neurobiology, University of California at Berkeley)   
 
Postdoctoral Fellows:  
Amaury Lendasse (University of Memphis; presently Helsinki University) 
Horatiu Voicu (University of Memphis; presently Houston University) 
 
Collaborators:  
Peter Erdi (Kalamazoo College, Henry R.Luce Prof. of Complex Systems) 
Mark D Holmes (Harborview Medical Center, University of Washington) 
Jose Principe (University of Florida, Gainesville) 
Toshio Fukuda (Nagoya University, Japan) 
Ichiro Tsuda (Hokkaido University, Japan) 
Dario Floreano, EPFL (Lausanne, Switzerland) 
 
Student Research Assistants (All University of Memphis): 
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Shahidul Pramanik – 2001-2002 
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Asha Kalindidi – 2002 – 2003 (Thesis) 
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Sangeeta Muthu – 2002-2004 (Thesis) 
Sai Sudha Ganti – 2003-2004 (Thesis) 
Derek Wong – 2002-2004 (Thesis) 
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Robert Kozma, Professor of Computer Science 
373 Dunn Hall, University of Memphis, Memphis, TN 
Tel: 901-678-2497 / Fax: 901-678-2480 
Email: rkozma@memphis.edu / URL: http://cnd.memphis.edu 
 
Program Manager: Dr. Benny N. Toomarian, Email: Nikzad.Toomarian@jpl.nasa.gov 
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II. Achievement Statements 
 
Budget Accomplishments: 
 
We have progressed with the budget plan as projected during the project period. We have 
received a no-cost extension for 6 months beyond the 3 year project period awarded originally. 
By the end of the extended project period we have completed the project budget in the amount of 
$695,064.00 according to the plans. Detailed budget data are attached. 
 
Research Accomplishments: 
 
We have completed the planned research goals in year 3 of the project. At the end of the 
extended project period of 3.5 years, we have completed and, in some areas, exceeded the 
milestones, which have been outlined at the start of the project in 2001. Our accomplishments 
and future plans are summarized in the Milestones document attached to this report. The project 
produced the following results: 

• 33 journal articles, 
• 33 conference proceedings, 
• 1 PhD dissertation and 5 MS Theses, 
• 1 Software Tool (Matlab Neurodynamics Toolbox), 
• 9 Workshops and symposia, 
• 4 Special Issues Edited or Co-Edited by senior personnel. 

The reprints of research reports and articles produced with the support of this grant during the 
reporting period are available of the Computational Neurodynamics Lab web site 
http://cnd.memphis.edu. Detailed description of project results and achievements are given there 
as well. 
 
Technical Conditions: 
 
The Computational NeuroDynamics Laboratory (CND) at the Division of Computer Science, 
Dept. Mathematical Sciences, The University of Memphis has been the host organization of the 
project.  Lab space for the project has been in the CND lab at two locations. Office space for 
graduate students is in 310 Dunn Hall (300 sqft), which also hosts the CND lab computer cluster 
with 16 parallel processors. CND Laboratory experimental facility hosting the mobile robot 
navigation environment for 2 Sony Aibo robots and supporting facilities are housed in 326 FIT 
(400 sqft), at the Fedex Institute of Technology building on the U of Memphis Campus site. 
Research in the CND Lab includes this NASA project, a related NSF-funded project, and a 
couple of collaborative research initiatives.  
 
Encl.: Report document  

Presentation handout (powerpoint) 
Reprints of research publications & relevant documents  



Final Summary on NASA Grant #NCC2-1244  Robert Kozma (PI) 

5 

  
 
 
 

Budget Performance of SODAS 
 
UoM Financial Records System Report printout is enclosed  
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III. Background of SODAS Project 
 
The discovery that brain dynamics exhibits chaotic features has profound implications on the 
study of higher brain function. A chaotic system has the capacity to create novel and unexpected 
patterns of activity. It can jump instantly from one mode of behavior to another, which manifests 
the fact that it has a collection of attractors, each with its basin, and that it can move from one to 
another in an itinerant trajectory. It retains in its pathway across its basins a history, which fades 
into its past, just as its predictability into its future decreases. Phase transitions between chaotic 
states constitute the dynamics that we need to understand how brains perform such remarkable 
feats as abstraction of the essentials of figures from complex, unknown and unpredictable 
backgrounds, generalization over examples of recurring objects, reliable assignment to classes 
that lead to appropriate actions, planning future actions based on past experience, and constant 
up-dating by learning.  
 
The KIII model is a working example of the implementation of these chaotic principles in a 
computer software environment. KIII exhibits several of the experimentally observed behaviors 
of brains, like robust pattern recognition and classification of input stimuli, and fast transitions 
between brain states. KIII consists of various sub-units; i.e., the KO, KI, and KII sets. The KO 
set is a basic processing unit and its dynamics is described by a 2nd order ordinary differential 
equation feeding into an asymmetric sigmoid function. By coupling a number of excitatory and 
inhibitory KO sets, KIe (excitatory) and KIi  (inhibitory) sets are formed. Interaction of 
interconnected KIe and KIi sets forms the KII unit. Examples of KI sets are PG and DG. 
Examples of KII sets in the olfactory system are the olfactory bulb, anterior olfactory nucleus 
and prepyriform cortex. In the hippocampus we have CA1, CA2, and CA3 as KII sets. By 
coupling KII sets with feed-forward and delayed feedback connections, one arrives at the KIII 
system. KIII shows rapid performance in learning new classes of training input data and it can 
generalize efficiently the classification of new test data.  

 
The operation of the KIII model is described as follows. In the absence of stimuli the system is in 
a high dimensional state of spatially coherent basal activity, which is governed by an aperiodic, 
nonconvergent global attractor. In response to an external stimulus, the system activates a 
landscape of multiple attractors. It is kicked out of the basal state into a local basin of attraction, 
which is a memory wing. This wing is usually of much lower dimension than is the basal state. It 
shows coherent and spatially patterned amplitude-modulated (AM) fluctuations. The system 
resides in the localized wing for the duration of the stimulus then it returns to the basal state. 
This is a temporal burst process that lasts for about a hundred milliseconds. A memory pattern is 
defined therefore as a spatio-temporal process represented by the sequence of spatial AM 
patterns during a burst. KIII-based modeling of the olfactory system is used to classify linearly 
non-separable patterns. Its performance is compared with those of statistical classification 
methods and multi-layer feed-forward neural network-based classifications. KIII compares 
favorably with these methods regarding robustness and noise-tolerance of the pattern 
recognition, especially for classification of objects that are not linearly separable by any set of 
features. 
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The next highest level of the K sets is the KIV model. As in the case of all other K sets, the 
architecture and functionality of KIV is biologically motivated. In this work we extend multiple 
KIII sets into a KIV set that models the interactions in the cortical-hippocampal system. KIV is 
intended to have the functionality of planning and selection of action, in addition to classification 
and pattern recognition represented by single KIII units. KIV consists of three KIII sets, which 
model the cortical and hippocampal areas. All 3 are involved with learning and memory. The 
hippocampus is strongly involved in the cognitive processes of spatial and temporal orientation 
(cognitive mapping and short-term memory). In the KIII and KIV models several types of 
learning rules are used simultaneously, including habituation, Hebbian reinforcement learning, 
supervised learning, and global stability control through normalization. All these learning 
methods exist in a subtle balance and their relative importance changes at various stages of the 
memory process.  
 
In the SODAS project, the principles of KIII and KIV sets are developed and implemented in the 
generation of self-organized development of autonomous adaptive systems. The systems under 
consideration have the tasks of recognition of sensory stimuli and make decisions regarding 
future actions, depending on the external inputs and internal motivations and goals of the 
autonomous agent. Our research activity is concentrated toward three major areas:  
 

(1) Developing the theory of encoding sensory data in nonconvergent, chaotic memories 
(KIII), and also establishing tools for reading out relevant information from the spatially 
distributed dynamical activity patterns (KIV level);  

(2) We apply the K models to describe sensation and perception for emergent goal-oriented 
behaviors. In particular, we establish the KIV model with 3 KIII components, each of 
which acts as interface with the external and internal environments, respectively, 
coordinated through the amygdala for generation of behavior and actions; 

(3) Implement the above theoretical results in software and hardware domains, in order to 
demonstrate the operation of the dynamical principles. This leads us to enabling a novel 
technology of intelligent autonomous robots for remote missions with the capacity of on-
site situation evaluation and decision-making, without requiring human presence and 
guidance. 
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IV. Milestones of SODAS Project 
 
A. MODELING SPATIO-TEMPORAL DYNAMICS OF BRAINS  
 
1. Development of the Computational KIV Model of Dynamic Memories  

 
A major achievement of the research is the development of the mathematical/ computational 
model of the brain as a KIV set. The KIV entity is analogous to the cerebral hemisphere in the 
vertebrate brain at the evolutionary level of the salamander, which is the locus of goal-directed 
behavior.  KIV works with 3 types of sensory signals: 
• Exteroceptors are sensory receivers that are directed to the environment, terrain, sources of 

fuel, hazards, etc.  It can represent visual, auditory, somatosensory, touch, etc signals. 
• Interoceptors are directed to the state of the device itself, such as the remaining charge on its 

batteries, rate of depletion or re-charging, state of its drive and turn motors, actual 
movements, and discrepancies between motor speeds and actual motion.   

• Orientation signals, e.g., gravity, visual flow, magnetic field. Orientation beacons describe 
the actual location of the animal with respect to a reference system, including “home”, and 
both positive (attractive) and negative (repellent) environmental cues other than “home”.  

The exteroceptors and beacons give situation reports, and the septum organizes the valence from 
interoceptors.  It is notable that the KIV level can be regarded as maintaining emotional states 
(desire, fear, frustration, hunger), but that it cannot be regarded as "conscious" in any meaningful 
sense. Goals are established by the human controller of the device, who can determine the 
specific location to which the device should move by establishing a beacon with a specific 
signal.  The device may be familiarized with a significant signal by training to recognize the 
particular beacon (tone sound, light color, etc.) as signifying the location of a fuel depot. The 
device will approach it, choosing its path among known hazards and avoiding new hazards by 
learning about them. 
 
The KIV model describes the crucial portions of the limbic system of brains that support 
intentional behavior such as orientation and operation in environments through acquisition of 
familiarity by exploration and learning. The KIV is a model of the basic limbic system, 
combining KIII sets to model the "what" (perceptual), "where" (hippocampal orientation 
memory), "why" (forebrain value system) and "how" (motor control) of a basic embodied 
biological agent.   
 

Achievement statement 1: We have designed and built the KIV model. It is shown 
that KIV is sufficient for the production of general intelligent behavior such as 
that observed in simple mammals and reptiles. At the present stage of building the 
KIV model, we successfully tested the operation of the interacting hippocampal 
and cortical components, having motor action in a simplified implementation. 
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2. Theory of Chaos in K sets 
 
The KIII model has been extensively studied in the past years. After solving the problem of 
destabilization of chaotic trajectories based on local homeostatic balance conditions in KI and 
KII units, the model demonstrated excellent performance as a classifier. Additive noise plays an 
important role in achieving optimum operation of KIII. The emphasis of previous studies has 
been on analyzing the performance of the model as a practically useful dynamical memory 
device. We have analyzed the KIII attractors in the case of deterministic model (without noise), 
as well as with the introduction of noise. External or internal noise can initiate a transition 
between dynamical states of KIII. This effect has a resonance character and it can be used to 
enhance a weak periodic input signal, thus producing a high signal-to-noise ratio. It seems 
plausible to hypothesize that this creates a favorable conditions for itinerant oscillations among 
high- and low-dimensional attractors as they struggle for dominance without success. The 
addition of noise can enhance the signal-to-noise ratio, which is of great practical importance for 
signal processing applications.  
 

Achievement statement 2: We have identified a wide range of attractors, including 
fixed points, limit cycles, tori, and chaos. Itinerant behavior takes place at a given 
range of model parameters. A well-defined range of additive noise induces a 
resonance effect that creates especially favorable conditions for itinerant behavior. 
The identified parameters are used in the practical implementation of KIV. 

 
3. Generating Biologically Plausible Intelligent Behavior by KIV 
 
KIII and KIV models of dynamic memories operate in the region of self-sustained oscillations, 
which is achieved through appropriate tuning of the underlying KII Sets. A method for finding 
point attractors of KII sets is proposed. The numerical experiments confirm earlier hypotheses 
about KII sets having point attractors. The model has several fixed points or a combination of 
fixed points and limit cycle, depending on weight parameters. The behavior of the eigenvalues of 
the linearized KII system indicate that it becomes non-hyperbolic when approaching small 
amplitude limit cycle. 
 
We have analyzed a discrete time model of K-sets. We have built a hierarchy of KA models, 
starting from the KA-I and KA-II units with fixed point and limit cycle dynamics, to the KA-III 
model with complex chaotic oscillations. For weak connection between KA-II sets, the leading 
Lyapunov exponents approach zero. The leading Lyapunov exponent incrementally increases 
with increasing scaling factor, until a certain level, where it drastically increases indicating the 
onset of a well-developed chaotic regime.  
 

Achievement Statement 3: We have demonstrated the presence of 1/f power 
spectrum distributions in the KA-III aperiodic dynamics, characteristic of critical 
states found in biological brains and also modeled by the original K-sets. The 
developed KA-III models are used to build an adaptive autonomous system that 
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explores the environment and generates optimal behavioral strategies in order to 
solve a given task.  

 
B. SENSATION AND PERCEPTION IN INTENTIONAL NAVIGATION  
 
4. Development of Sensory and Orientation Functions of KIV  
 
The KIV model is used for the description of the interaction between the sensory and cortical 
systems, the hippocampus, the amygdala, and the septum. Neural activity patterns in KIV 
determine the emergence of global spatial encoding to implement the orientation function of a 
simulated animal. Our results embody the mechanisms, which we believe support the generation 
of cognitive maps in the hippocampus, based on the sensory input-based destabilization of 
cortical spatio-temporal patterns. In this research, the operation of two KIII sets that model the 
sensory cortex and the hippocampal formation (HF) are studied. The HF and cortex complete 
their functions by sampling the environment (external or internal) at a theta rate. To achieve this 
periodicity, KIV relies on the septum to generate the theta frame rate as a gating function.  
Temporal framing is done in all sensory systems. Examples of this sampling are the saccadic 
movement in visual system, sniffing in olfaction, perhaps something similar in the cochlea etc. 
Sensory signals to the cortex are the 6 short-range infrared signals as used in the case of 
simulated Khepera robot. For the sensory signals, we consider the past several time steps as 
inputs, in addition to the present time frame. The orientation signals are the distances and 
directions with respect to the landmarks, measured from the actual location of the robot. 
 

Achievement Statement 4: We have invented a novel method of learning spatial 
maps using a KIII hippocampal model, as part of KIV. We have demonstrated the 
feasibility of the learning methodology, and showed that K models can effectively 
solve navigation tasks. With this new advancement, we have expanded the 
potential application areas of the K sets from the classification task to a more 
complex decision making and behavioral generation domains. 

 
5. Robust Multisensory Fusion in KIV 
 
We have analyzed the KIII model in completing the task of spatial navigation. The system 
includes a hippocampal module that processes global spatial information and a cortical module 
that deals with local sensory information. The model of navigation that we propose describes the 
activity of the hippocampus and the cortex by using two, interacting KIII systems.  The model 
has the following features: 
• We used a localization system that uses high level and low-level sensory information to 

provide a robust representation of space.  
• We used the chaotic dynamics of the KIII sets to implement pattern and place recognition 

systems.  
• The place recognition system guides navigation based on global landmarks and the pattern 

recognition system performs obstacle avoidance based on local sensory information.  
• The connectivities between nodes in the third layer of the KIII sets are updated using a 

Hebbian learning rule.  
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• The decision of which place to move next is based on the positive reinforcement the 
simulated animal receives while exploring the environment.  

 
Although it accomplishes the same navigational tasks as other related models of spatial 
navigation, this novel approach is fundamentally different as it takes into consideration the 
chaotic dynamics observed at the EEG level. We test the model using several spatial navigation 
paradigms: goal finding, shortcutting and detouring.  
 

Achievement Statement 5: Computer simulations show that the performance of the 
agent qualitatively matches that of animals and related models. The advantage of 
our method compared to others lies in the way it manifests a natural fusion of 
multi-sensory information. This new approach provides a novel interpretation of 
how the brain accomplishes spatial navigation. 

 
6. Phase Transitions in Brains and Brain Models 
 
The goal of this research is to design advanced signal processing techniques to identify neural 
correlates of cognitive processing using EEG signals.  A novel electrode array was designed and 
built for scalp recording: a curvilinear 1x64 row placed on the scalp with electrode intervals of 3 
mm and length 19 cm, giving 10-fold increase over prior art in spatial resolution.  The Hilbert 
transform was applied to get the instantaneous phase, giving 20-fold increase in temporal 
resolution.   
 
The obtained data gave spatiotemporal patterns of unprecedented clarity and supported new 
theory with emphasis on four fundamental principles: 
• Self-organized criticality (SOC):  Brains maintain themselves at the edge of global 

instability by inducing a multitude of small and large adjustments.  The time intervals and 
sizes of the changes have fractal distributions, as manifested in histograms and in 1/f forms 
of spatial and temporal power spectral densities. 

• First order phase transitions:  Each adjustment is a sudden and irreversible change in the 
state of a neural population that carries the population across a separatrix from one basin of 
attraction to another.  The state changes are overlapping for populations of all sizes from 
less than a mm to an entire cerebral hemisphere.  

• Chaotic itinerancy:  The incremental changes by phase transitions at all levels tend to be 
recurrent at nearly periodic intervals and to repeat in the form of stereotypic behaviors and 
habits.  Normally each attractor begins to dissolve as soon as it is accessed, allowing the 
brain to escape entrapment in a maladaptive behavior. 

• Anomalous dispersion:  The spread of each phase transition through the population is too 
rapid to be accounted for by serial synaptic transmission.  Each population by virtue of long 
axons and small world effects has a group velocity at which information is transmitted and a 
much higher phase velocity at which a phase transition spreads.  This ensures synchrony 
over domains ranging from less than a mm to over 20 cm.  

 
To describe and explain background 'spontaneous 'cortical oscillations in the EEG, high-density 
8x8 subdural arrays were fixed over sensory cortices of rabbits. EEG were spatially low pass 
filtered, temporally band pass filtered, and segmented in overlapping windows moved at 2 ms. 
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Phase was measured by curve fitting using nonlinear regression with the cosine as the basis 
function. Analytic phase was measured with the Hilbert transform. Spatial phase patterns in 2-D 
were measured by fitting a cone as the basis function to the 8x8 phase surfaces. Measurement 
gave estimates of two fundamental state variables at each point in time: the rate of change in 
phase with time (the frequency), and the rate of change in phase with distance (the gradient). 
These 2 quantities enabled description of intermittent spatiotemporal patterns of phase. The 
diameters, durations, and phase velocities of these patterns varied with window duration and 
with interelectrode interval. The distributions of spatial wavelength and diameter were skewed, 
those of gradient and velocity were bimodal, and those of duration and interval were fractal. 
Recurrence rates of larger patterns were in the theta range.  
 

Achievement Statement 6: We have identified beta-gamma phase patterns in the 
ms-mm to m-s ranges, which evidence that neocortex maintains a scale-free state 
of self-organized criticality in each hemisphere as the basis for its rapid and 
repetitive integration of sensory input with experience. An act of perception is 
described as a widespread, almost instantaneous re-organization of neocortical 
background activity, which is induced by thalamic input acting as an order 
parameter. 

 
To explain spatial patterns of phase in beta-gamma EEG activity of human neocortex, a high-
density (10x10 mm) array of 8x8 electrodes (1.25 mm intervals) gave EEG signals from the 
inferior temporal gyrus of a neurosurgical patient awake and at rest. Frequency and phase were 
measured by the Hilbert method at each digitizing step and by the Fourier method in a moving 
window stepped along the filtered signals at the digitizing interval (5 ms). These measures 
enabled calculation of the location, size, time of onset, phase velocity, duration, and recurrence 
interval of radially symmetric spatial patterns denoted phase cones. Results: The apex of each 
cone showed the location and onset time of abrupt re-initialization of phase at a frequency in the 
beta-gamma range. Half power cone diameters were 5-50 mm or more. Durations had fractal 
distributions with means ranging from 6-300+ ms depending on window length. Recurrence rates 
of longer-lasting phase cones were in the theta-alpha range.  
 

Achievement Statement 7: It is concluded that phase cones reflect chaotic state 
transitions leading to new cortical patterns assimilating sensory input. The 
overlapping cones show that neocortex maintains a stable, scale-free state of self-
organized criticality by homeostatic regulation of neural firing, through which it 
adapts instantly and globally to rapid environmental changes. The proposed 
mechanism for stabilization of hemispheric neurodynamics may open new 
avenues to study human cognition and dynamic brain diseases. The present results 
also suggest that phase structures in the human scalp EEG relating to cognition 
may be readily accessible with standard clinical EEG equipment. 

 
C. SOFTWARE AND HARDWARE IMPLEMENTATION ENVIRONMENTS  
 
7. Simple Software Simulation Environments for Action Selection: Tetris and Khepera  
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Our Tetris and Khepera computer simulations are aimed at the creation of action selection 
mechanisms that are capable of some of the flexibility of behavior displayed by biological brains 
on real-time tasks under difficult situations.  We developed the Tetris Packing Task, which is a 
relatively simple task still rich in the possibilities for the emergence of skills, strategies and goals 
under conditions of time and resource constraints. This is a simple testbed for developing action 
selection mechanisms using principles of chaotic neurodynamics.  The experience we have 
gained in creating the tetris environment is very useful in exploring emergent behavior in 
adaptive agents.  
 

Achievement Statement 8: We have used the simulated Khepera environment to 
generate cognitive maps for goal oriented task completion. In a basic operation, 
the robot is in a wall-following mode, with some random component added for 
more natural behavior. After sufficient amount of exploration, the robot develops 
the cognitive map. We have obtained these maps with various running conditions. 
The method is robust to moderate noise levels in the sensory signals. 

 
8. Implementing KIII and KIV in simulated T maze and Martian environments 
 
We simulated the multiple T-maze paradigm by placing the agent in the maze and giving it 
positive reinforcement in the hippocampal KIII, whenever it moved towards the goal location.  
On the other hand, we use negative reinforcement in the cortical KIII, if the robot finds an 
obstacle. The agent demonstrates a significant improvement after 5 trials compared to the first 
training trial and the performance can be further improved as the number of learning trials 
increases. A more challenging navigation problem is to find the location of the goal in a 
simulated Mars like rocky environment. We tested our navigation model in an environment that 
contains uniformly distributed obstacles of different sizes, which have exponential size 
distribution, approximating Martian terrain. The learning paradigm is the same as for the goal 
finding in the T-maze. We used Hebbian reinforcement learning in the KIV model having 
hippocampal and cortical KIII components.  
 

Achievement Statement 9: The agent demonstrates skillful navigation in a 
complex environment. It is able to avoid obstacles and to reach the goal location 
using a suboptimal path. It learns goal-oriented behavior based on relatively few 
training examples. The average number of steps in the case of a trained KIV 
control system is much smaller (10 times less) than for random exploration. The 
experiment shows the power of the K-based navigation method in the case of 
limited and often contradictory sensory data. 

 
9. Proof-of-principle of KIV Autonomous Control Using AIBO Mobile Robot Testbed 
 
Intelligent autonomous agents are capable of independent action in open, dynamically changing 
environments. The agent used for this milestone is the SONY AIBO dog (ERS 220), called 
EMMA. EMMA is a wireless agent that communicates via a LAN to a PC. It has a small 
memory stick that stores the operations to be performed by the agent and it is battery-operated. 
We will use two types of sensors:  
• Infra red IR sensors that detect the distance from obstacles (local sensing); 
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• CMOS camera sensor that can capture images and other visual information (long-range 
sensing).  

The action selection mechanism is dependent on the sensory inputs from the robot. EMMA 
learns to navigate using colored balls as landmarks located in the environment (10ft x 14 ft).  At 
present, we simplify the image processing task and use only color-detection mode of the CMOS 
cameras. We supplement AIBO’s sensory system with an external camera located above the 
experimental area, which is used to give global positioning clues to EMMA. In the present 
implementation, we use Sony OPEN-R environment to communicate between Aibo and the PC, 
which runs KIV in Matlab. We have achieved a reasonably fast operation of EMMA with delay 
time between decisions is in the order of 1-2 seconds or less. 
 
We have implemented a KIV-based control algorithm on EMMA mobile robot platform with 
two senses (vision and IR). In addition to the two KIII components, our system uses a model 
amygdala. The amygdala is responsible for coordinating the KIV operation and making a 
decision to be processed by the motor system. The amygdala is a complex system that self-
organizes its operation using spatio-temporal chaotic principles. In the present implementation 
we use a simplified version of the amygdala, which uses a pre-defined rule to switch between 
operation modes dominated by the simulated cortex or the hippocampus.  
 

Achievement Statement 10: The autonomous robot EMMA has demonstrated her 
learning capabilities using a landmark system in open environment and in the 
presence of obstacles, as well. We have quantitatively characterized learning 
effects in the model hippocampus and sensory cortex, and also the role of short-
term memory effects. The physical embodiment of the dynamical neural memory 
design was not part of our original milestones, therefore these results indicate 
that we performed well beyond the prescribed project tasks by producing a 
proof-of-principle demonstration of dynamical memory and control in 
mobile robots. 
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V. Broader Impact and Products 
 
Educational: 
 
Dissertations/Theses: 
 
1. PhD Dissertation: Towards a model of basic intentional systems: Chaotic dynamics for 

perception and action in autonomous adaptive agents, Derek Harter (U of Memphis, 2004) 
 
2. MS Thesis: Spatial navigation using KIV model in simulated environment, Derek Wong (U 

of Memphis, 2004) 
 
3. MS Thesis: KIV model and navigation using AIBO, Sangeeta Muthu (U of Memphis, 

2004) 
 
4. MS Thesis: Automatic generation of cognitive maps using local and global orientation 

signals, Sai Sudha Ganti (U of Memphis, 2004) 
 
5. MS Thesis: Building cognitive maps for navigation task in software agents, Asha Kalidindi 

(U of Memphis, 2003) 
 
6. MS Thesis: The hierarchy of K sets: From pattern recognition to navigation, Prashant 

Ankaraju (U of Memphis, 2002) 
 
Courses: 
In the field of educational impact, there have been over 30 student class projects on research 
topics related to SODAS project in the following graduate courses at The University of Memphis 
with significant minority and women involvement: 
 

1. COMP 8740/7740 Neural Networks (2001, 2003) 
 
2. COMP 8745/7745 Computational Intelligence (2002, 2003, 2004) 

 
3. COMP 8713/7713 Advanced Algorithms (2002) 

 
4. COMP 8991/7991 Computational Neurodynamics (2003) 

 
5. COMP 6470/4470 Soft Computing (2004) 

 
Software Package: 

• Neurodynamics Toolbox for Matlab, Test Version, http://cnd.memphis.edu/k/  
This version is under development; contains a package of Matlab .m files, to be used by 
students/researchers to build hierarchical K sets: KO, KI, KII, KIII, with demos and 
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worked out examples. This software is developed under an agreement with Mathworks 
Co. 
 

Conference and Editing Products: 
 
Journal Special Issues Edited: 
 

1. Complex Nonlinear Neural Dynamics, Special Issue of Journal of Integrative 
Neuroscience, Eds. P. Andras, P. Erdi, R. Kozma, Imperial College Press, Vol. 2, No.1, 
pp. 1-147, 2003. 

 
2. Temporal Coding for Neural Information Processing, Special Issue of IEEE Transactions 

on Neural Networks, Eds. DL Wang, WJ Freeman, A. Lozowski, R. Kozma, A. Minai, 
September 2004, Vol. 15, No. 5. 

 
3. Intentional Systems – Biological Foundations, Modeling, and Robotic Implementations, 

Special Issue of International Journal of Intelligent System, Eds. R. Kozma, T. Fukuda, 
Wiley, forthcoming, 2005. 

 
4. Nonlinear Spatio-temporal Neural Dynamics - Experiments and Theoretical Models, 

Special Issue of Biological Cybernetics, Eds. P. Erdi, R. Kozma, P. Andras, in press, 
2005. 

 
Workshops/Symposia/Tutorials Organized: 
 

1. Workshop on “Nonlinear Neurodynamics,” Organizer and Co-Chairs P. Andras, P. Erdi, 
R. Kozma, Computational Neuroscience Conference CNS*2004, Baltimore, July 2004  

 
2. Symposium on “Intentional Dynamic Systems,” Organized by R. Kozma, and D. Harter, 

April 23-25, 2004, FIT, Memphis, TN. 
 

3. Tutorial on “Dynamical Memory Neural Networks” at IEEE IJCNN’03, July 20, 2003, 
Portland, OR 

 
4. Symposium on the “Dynamics of Perception and Cognition,” Organized by R. Kozma, 

February 27-March 1, 2003, Memphis, TN. 
 

5. Workshop on “Non-linear spatio-temporal neural dynamics – Experiments and theoretical 
models,” Organized by P. Andras, P. Erdi, R. Kozma, Alicante, Computational 
Neuroscience Conference CNS*2003, Spain, July 8, 2003. 

 
6. Workshop on “Complex Nonlinear Neural Dynamics,” Organizers P. Andras, A. Assadi, 

D. DeMaris, R. Kozma, Computational Neuroscience Conference CNS*2002, Chicago, 
July 25, 2002. 
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7. Symposium on “Hippocampus: Structure, Function, and Dynamics,” Invited Series by P. 
Erdi, Organized by R. Kozma, May 23-26, 2002, Memphis, TN. 

 
8. Workshop on “Complex Nonlinear Neural Dynamics,” Organizers P. Andras, A. Assadi, 

D. DeMaris, R. Kozma, Computational Neuroscience Conference CNS*2001, Asilomar, 
July 5, 2001. 

 
9. Symposium on “Consciousness, Cognition, and Memory,” Organized by S. Franklin, R. 

Kozma, April 6-7, 2001, Memphis, TN. 
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VI. Research Papers on SODAS  
      (2001-2005) 
 

Journal Papers - Computational 

1. Harter, D., Kozma, R. (2005) “Chaotic Neurodynamics for Autonomous Agents,” IEEE 
Trans. Neural Networks, 16(3) (in press, May, 2005) 

2. Puljic, M., Kozma, R. (2005) “Activation Clustering in Neural and Social Networks,” 
Complexity, (in press) 

3. Kozma, R., Wong, D., Demirer, M., Freeman, W.J. (2005) “Learning intentional behavior 
in the K-model of the amygdala and enthorhinal cortex with the cortico-hippocampal 
formation,” Neurocomputing (in press) 

4. Kozma, R., Puljic, M., Bollobas, B., Balister, P., Freeman, W.J. (2005) “Phase Transitions 
in the Neuropercolation Model of Neural Populations with Mixed Local and Non-Local 
Interactions,” Biol. Cybernetics (in press) 

5. Harter, D., Kozma, R., (2005) “Aperiodic Dynamics and the Self-Organization of 
Cognitive Maps in Autonomous Agents,”  Int. J. Intelligent Systems (in press) 

6. Beliaev, I., Kozma, R. (2004) “Time series prediction using chaotic neural networks: Case 
study of CATS Benchmark test”  (submitted) 

7. R. Kozma, M. Puljic, P. Balister, B. Bollobas, W.J. Freeman, (2004) ”Neuropercolation: A 
Random Cellular Automata Approach to Spatio-Temporal Neurodynamics,” Lecture 
Notes in Computer Science, vol. 3305, pp. 435-443. 

8. Wang, D.L., Freeman, W.J., Kozma, R., Lozowski, A.G., Minai, A.A. (2004) “Guest 
Editorial – Special Issue on Temporal Coding for Neural Information Processing,” IEEE 
Trans. Neur. Netw., 15(5), pp. 953-956. 

9. Kozma, R., Wong, D., Freeman, W.J., Erdi, P. (2004) “Learning environmental clues in 
the KIV model of the cortico-hippocampal formation,” Neurocomputing, 58-60, 721-728. 

10. Voicu, H., Kozma, R., Wong, D., Freeman, W.J. (2004) “Spatial navigation model based 
on chaotic attractor networks,” Connection Science, 16(1), pp. 1-19. 

11. Kozma, R., (2003) On the Constructive Role of Noise in Stabilizing Itinerant Trajectories 
on Chaotic Dynamical Systems, Chaos, Special Issue on Chaotic Itinerancy, 11(3), pp. 
1078-1090. 
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12. Andras, P., Kozma, R., Erdi., P. (2003) “Complex Nonlinear Neural Dynamics: 
Experimental Advances and Theoretical Interpretations,” Journal of Integrative 
Neuroscience, 2(1), pp. 1-3. 

13. Kozma, R., Freeman, W.J. (2003) Basic Principles of the KIV Model and its application to 
the Navigation Problem, Journal of Integrative Neuroscience, 2(1), pp. 125-146.  

14. Kozma, R., Freeman, W.J., Erdi, P. (2003) The KIV Model – Nonlinear Spatio-temporal 
Dynamics of the Primordial Vertebrate Forebrain, Neurocomputing, 52-54, pp. 819-826. 

15. P.K. Roy, Kozma, R., Majumdar, D.D. (2002) "From Neurocomputation to 
Immunocomputation: A Model and Algorithm for Fluctuation-Induced Phase Transition in 
Biological Systems," IEEE Transactions in Evolutionary Computation, 6(3): 292-305. 

16. Kozma, R., Freeman, W.J. (2002) Classification of EEG Patterns Using Nonlinear 
Neurodynamics and Chaos, Neurocomputing, 44-46, pp. 1107-1112. 

17. Kozma, R. (2001) "Fragmented attractor boundaries in the KIII model of sensory 
information processing - Evidence of Cantor encoding in cognitive processes," Behavioral 
and Brain Sciences, 24(5), pp. 820-821.  

Journal Papers – Physiology 
 
18. Freeman WJ [2005] Self-organizing brain dynamics and the construction of movement 

goals. Chapter 10 in: Davids K, Bennett S, Newell K (eds.) Variability in the Movement 
System: A Multidisciplinary Approach. Champagne IL: Human Kinetics Inc., in press. 

 
19. Freeman W.J. [2005] Origin, structure, and role of background EEG activity. Part 3. 

Neural frame classification. Clin. Neurophysiol. In press.  

20. Freeman W.J. [2004] Origin, structure, and role of background EEG activity. Part 1. 
Analytic amplitude. Clin. Neurophysiol. 115: 2077-2088. 

 
21. Freeman W.J. [2004] Origin, structure, and role of background EEG activity. Part 2. 

Analytic phase. Clin. Neurophysiol. 115: 2089-2107.  
 

22. Freeman, W.J., Burke, B.C., Holmes, M.D. & Vanhatalo, S. [2003] Spatial spectra of 
scalp EEG and EMG from awake humans. Clin. Neurophysiol. 114: 1055-1060. 

 
23. Freeman WJ (2003) Neurodynamic models of brain in psychiatry. Neuropsycho-

pharmacology 28: 554-463. 
 

24. Freeman, W.J., Burke, B.C. & Holmes, M.D. [2003] Aperiodic phase re-setting in scalp 
EEG of beta-gamma oscillations by state transitions at alpha-theta rates. Human Brain 
Mapping 19(4):248-272. 

 



Final Summary on NASA Grant #NCC2-1244  Robert Kozma (PI) 

20 

25. Freeman WJ (2003) Performance of intelligent systems governed by internally generated 
goals. Chapter 3 in: "Theories of the Cerebral Cortex". Hecht-Nielsen RC, McKenna T 
(eds.) New York: Academic Press. Pages 65-84. 

 
26. Freeman WJ (2003) The wave packet: An action potential for the 21st century. J. 

Integrative Neurosci. 2: 3-30. 
 

27. Freeman WJ (2003) Evidence from human scalp EEG of global chaotic itinerancy. Chaos 
13 (3), pp. 1067-1077.  

 
28. Freeman, W.J. (2003) A neurobiological theory of meaning in perception. Part 1. 

Information and meaning in nonconvergent and nonlocal brain dynamics. Int. J. Bifurc. 
Chaos 13: 2493-2511.    

 
29. Freeman, W.J. (2003) A neurobiological theory of meaning in perception.  Part 2. Spatial 

patterns of phase in gamma EEG from primary sensory cortices reveal the properties of 
mesoscopic wave packets.  Int. J. Bifurc. Chaos 13: 2513-2535.  

 
30. Freeman WJ, Gaál G, Jornten R. (2003) A neurobiological theory of meaning in 

perception.  Part 3.  Multiple cortical areas synchronize without loss of local autonomy. 
Int. J. Bifurc. Chaos 2003, 13: 2845-2856.  

 
31. Freeman, W.J. & Burke, B.C. (2003) A neurobiological theory of meaning in perception.  

Part 4. Multicortical patterns of amplitude modulation in gamma EEG. Int. J. Bifurc. 
Chaos 13: 2857-2866. 

 
32. Freeman WJ, Rogers L.J.(2003) A neurobiological theory of meaning in perception.  Part 

5. Multicortical patterns of phase modulation in gamma EEG.  Int. J. Bifurc. Chaos 2003, 
13: 2867-2887.   

33. Freeman WJ, Rogers LJ. (2002) Fine temporal resolution of analytic phase reveals 
episodic synchronization by state transitions in gamma EEGs. J. Neurophysiol. 2002, 87: 
937-945.  

 
Conference Proceedings 

1. Kozma, R., Wong, D., Tunstel, E., Freeman, W.J. (2004) “The role of amygdala on the 
behavior of intentional autonomous agents,” 1st Intelligent Systems Technical Conference of 
the American Institute of  Aeronautics and Astronautics AIAA. 

2. Harter, D. and Kozma, R. (2004).   Complex Systems Approaches to the Ontogenetic 
Development of Behavior.” 1st Intelligent Systems Technical Conference of the American 
Institute of Aeronautics and Astronautics AIAA. 

3. Kozma, R., Muthu, S. “Implementing Reinforcement Learning in the Chaotic KIV Model 
using Mobile Robot Aibo,” 2004 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems 
IROS’04, Sept. 28 – Oct. 2, 2004, Sendai, Japan. 
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4. Kozma, R., Wong, D., Freeman, W.J. (2004) “Learning intentional behavior in the KIV 
model of the amygdala and the cortico-hippocampal system,” Computational Neuroscience 
Conference CNS*04, July 18-20, Baltimore, MD. 

5. Harter, D., Kozma, R. (2004) “Navigation and Cognitive Map Formation using Aperiodic 
Neurodynamics,” Proc. 8th Int. Conf.: From Animals to Animats - Simulation of Adaptive 
Behavior SAB'04, July 13-17, 2004, Los Angeles, CA. 

6. Kozma, R. (2004) “On noise-induced resonances in neurodynamic models,” IEEE/INNS 
2004 Int. Joint Conference on Neural Networks IJCNN’04, July 25-29, 2004, Budapest, 
Hungary, pp. 3041-3045,IEEE Press, Piscataway, NJ. 

7. Muthu, S., Kozma, R., Freeman, W.J. (2004) “Applying KIV Dynamic Neural Network 
Model for Real Time Navigation by Mobile Robot Aibo,” IEEE/INNS 2004 Int. Joint 
Conference on Neural Networks IJCNN’04, July 25-29, 2004, Budapest, Hungary, pp. 1617-
1622, IEEE Press, Piscataway, NJ. 

8. Ilin, R., Kozma, R., Freeman, W.J. (2004) “Studies on the Conditions of Limit Cycle 
Oscillations in the KII Models of Neural Populations,” IEEE/INNS 2004 Int. Joint 
Conference on Neural Networks IJCNN’04, July 25-29, 2004, Budapest, Hungary, pp. 1511-
1517, IEEE Press, Piscataway, NJ. 

9. Beliaev, I., Kozma, R. (2004) “Time series prediction using chaotic neural networks: Case 
study of IJCNN CATS benchmark test,” IEEE/INNS 2004 Int. Joint Conference on Neural 
Networks IJCNN’04, July 25-29, 2004, Budapest, Hungary, pp. 1609-1613, IEEE Press, 
Piscataway, NJ.  

10. Gomez, J. Kozma, R. (2004)  “Fuzzy Class Binarization using Coupled Map Lattices,” North 
American Fuzzy Information Processing Conference NAFIPS’04, June 27-30, 2004, Banff, 
Alberta, Canada. 

11. Harter, D., Kozma, R. (2004) “Aperiodic Dynamics and the Self-Organization of Cognitive 
Maps in Autonomous Agents,” Proc. 17th Int. FLAIRS Conference, May 17-19, 2004, Miami 
Beach, FL. 

12. Wong, D., Kozma, R., Tunstel, E., Freeman, W.J. (2004) “Navigation in a Challenging 
Martian Environment Using Multi-Sensory Fusion in KIV Model,” Proc. Int. Conf. Robotics 
& Automation ICRA’04, April 28 – May 1, 2004, New Orleans, LA. 

13. Harter, D, Kozma, R. (2004).   “Aperiodic Dynamics for Appetitive/Aversive Behavior in 
Autonomous Agents,” Proc. Int. Conf. Robotics & Automation ICRA’04, April 28 – May 1, 
2004, New Orleans, LA. 

14. Kozma, R., Freeman, W.J., Erdi, P. (2004) “Learning in the KIV dynamic neural network 
model: Biological basis and computational applications,” 2004 Learning Workshop of the 
Computational and Biological Learning Society, April 6-9, 2004, Snowbird, UT. 
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15. Kozma, R., Ankaraju, P. (2003) Learning Spatial Navigation Using Chaotic Neural Network 
Model, International Joint Conference on Neural Networks IJCNN’2003, Portland, OR, July 
14-19, 2003. 
 

16. Li, H., Kozma, R. (2003) A Dynamical Neural Network Method for Time Series Prediction 
Using the KIII Model, International Joint Conference on Neural Networks IJCNN’2003, 
Portland, OR, July 14-19, 2003. 
 

17. Puljic, M., Kozma, R. (2003) Phase Transitions in a Probabilistic Cellular Neural Network 
Model Having Local and Remote Connections, International Joint Conference on Neural 
Networks IJCNN’2003, Portland, OR, July 14-19, 2003. 
 

18. Kozma, R., H. Voicu, D. Wong, and W. J. Freeman, Dynamical Neural Network Algorithm 
for Autonomous Learning and Navigation Control IEEE 2003 International Conference on 
Systems, Man, & Cybernetics SMC'03, Wasington D.C., Oct. 5-8, 2003. 
 

19. Freeman WJ (2002) Revisiting 'Dynamical Disease' in light of limitations on the utility of 
differential equations for modeling brain function.  Abisko, Sweden: Workshop on Modeling 
Mental Disorders and Processes 
 

20. Freeman WJ (June 2002) Dynamic Models of Intent (Goal-Directedness) are Essential for 
Truly Intelligent Robots and Other Machines. International Conference on Artificial 
Intelligence in Engineering and Technology (ICAIET), Kota Kinabalu, Sabah. 
 

21. Harter, D., Kozma, R. (2002) “ Simulating Chaotic Neurodynamics for Adaptive Agents,” 
From Animals to Animats 7: 7th International Conference on Simulation of Adaptive 
Behavior (SAB 7), Edinburgh, U.K., August, 2002. 
 

22. Kozma, R., Harter, S., Achunala, S. (2002) “Action Selection Under Constraints: Dynamic 
Optimization of Behavior in Machines and Humans,” International Joint Conference on 
Neural Networks IJCNN’02, World Congress on Computational Intelligence WCCI’2002, 
Honolulu, Hawaii, May 12-17, 2002. 
 

23. Pramanik, S., Kozma, R., Dasgupta, D. (2002) “Dynamical Neuro-Representation of an 
Immune Model and its Application for Data Classification,” International Joint Conference 
on Neural Networks IJCNN’02, World Congress on Computational Intelligence WCCI’2002, 
Honolulu, Hawaii, May 12-17, 2002. 
 

24. Kozma, R., Freeman, W.J. (2001) “Control of Mesoscopic/ Intermediate-Range Spatio-
Temporal Chaos in the Cortex,” Proc. 2001 American Control Conference ACC01, June 25-
27, 2001, Arlington, VA. 
 

25. Kozma, R., D. Harter, W.J. Freeman, S. Franklin (2001) "Self-Organizing Ontogenetic 
Development for Autonomous Adaptive Systems," IEEE/INNS Int. Joint Conf. Neural 
Networks, Washington D.C., July 14-19, 2001, pp. 633-637. 
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26. Kozma, R., W.J. Freeman (2001) "Analysis of Visual Theta Rhythm - Experimental and 
Theoretical Evidence of Visual Sniffing," IEEE/INNS Int. Joint Conf. Neural Networks, 
Washington D.C., July 14-19, 2001, pp. 1118-1123. 
 

27. Harter, D., Kozma, R. (2001) " Task environments for the dynamic development of 
behavior," International Conf. Computer Science ICCS/ISDA, May 28-30, 2001, San 
Francisco, CA; "Lecture Notes in Computer Science", Springer Verlag, LNCS 2074, pp. 300-
309. 
 

28. Harter, D., Kozma, R., Graesser, A.C. (2001) “Models of ontogenetic development for 
autonomous adaptive systems,” in: Proceedings of the 23rd Annual Conference of the 
Cognitive Science Society (CogSci 2001), Edinburgh, U.K., August 1-4, 2001, pp. 405-410. 
 

29. Harter, D., Kozma, R. (2001) “Ontogenetic development of behavior for simple tasks,” 
Proceedings of the Artificial Intelligence and Soft Computing Conference (ASC 2001), 
Cancun, Mexico, May, 2001, pp. 410-413. 
 

30. Harter, D., Kozma, R., Franklin, S. P. (2001) "Ontogenetic development of skills, strategies, 
and goals for autonomously behaving systems," 5th International Conference on Cognitive 
and Neural Systems, Boston, MA, May 30 - June 2, 2001. 
 

31. Harter, D., Kozma, R., Franklin, S.P. (2001) “Models of ontogenetic development: The 
dynamics of learning,” Proceedings of the 2001 Learning Workshop, Snowbird, UT, April 
10-13, 2001. 
 

32. Harter, D., Kozma, R. (2001) “Ontogenetic development of skills, strategies and goals for 
autonomously behaving systems,” Proceedings of the 5th World Multi-Conference on 
Systemics, Cybernetics and Informatics (SCI2001), Orlando, FL, July 22-25, Volume III, pp. 
178-181, 2001. 
 

33. Freeman, W.J. (2001) “Self-organizing brain dynamics and the construction of movement 
goals”, Chapter 10 in: Variability in the Movement System: A Multi-Disciplinary Perspective, 
Davids K, Bennet S, Newell K. (eds.) published in Human Kinetics, 2001. 
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Appendix I 
 
Extract from the SODAS Description accepted for funding by grant NCC2-1244 
 
Technical Area : TA-4 Revolutionary Computing (Biology-Inspired Approaches) 
 

4. Expected Results 
The major result of our research will be to demonstrate the ability of our models to develop 

sophisticated and flexible behavioral patterns simply through the real-time interaction of the 
agent with its environment due to a process of ontogenetic development.  We will be expanding 
current models of the formation of embodied categories through dynamical processes to also 
self-organize an appropriate behavioral repertoire.  Our system will represent the first concrete 
implementation of the ideas of dynamic embodied cognition and ontogenetic development in a 
complete autonomous agent.  We will demonstrate the ability of such dynamical neurological 
models to form embodied category representations and to produce affordances or opportunities 
for behavior from such representations.  Further we hope to demonstrate a process of artificial 
ontogenetic development of skills, strategies and goals.  During the course of this research we 
will be developing various cognitive models of perceptual and motor tasks.  We will then use the 
results of such cognitive models to develop more complete autonomous agents for simulated 
environments.  

a. Conceptual Design 
The research would produce results on several levels.  On the conceptual level we would 

expect to establish theories of pulsing dynamics of internal representations modulated by sensory 
inputs, leading to category generation and learning in cognitive agents.  We would develop 
methods of shaping the attractor landscape of agents when needed, using learning methods at 
various time scales.  For example prompt associative (Hebbian) learning for the microscopic 
level, and long-term habituation and stability using chaos control, adaptive critics and re-
normalization tools for the intermediate and macroscopic levels.  Further we would analyze 
various manifestations of mesoscopic organization using mathematical descriptions, and the role 
of this intermediate level in category formation.  We would compare the mesoscopic 
organization of our cognitive models to that observed in actual biological systems. 

In addition to the development of these conceptual tools for dynamical embodied category 
formation, we would also produce conceptual architectures of complete artificial limbic systems 
for intentionally behaving systems.  Such architectures would be modeled after the properties of 
known simple biological limbic systems.  We expect that agents built upon such principles 
would exhibit a flexibility of behavior and a capacity for learning that is beyond the capabilities 
of current agent architectures.  In effect, we hope to build artifacts that display true intentionality 
and situated activity within their environment.  The design of the components and architectures 
of these artificial limbic systems would form the basis for implementations and demonstrations 
in various autonomous agents. 
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b. Motor Coordination Tasks 
Some of the first models we will build will be extensions of dynamical category formation.  

Our first models combining perception and action will be of simple motor coordination tasks, 
such as limb synchronization tasks and the production of oscillatory movements and their 
dynamic modification in response to environmental challenges.  The Haken-Kelso-Bunz model 
(Kelso 1995, Haken, Kelso & Bunz 1985) is a top down dynamical model of the attractor states 
of a particular motor task performed by humans.  In this task, people are asked to swing their 
index fingers back and forth (like car windshield wipers) to the beat of a metronome.  People 
naturally exhibit one of 2 attractors, in-phase motion and anti-phase motion.  This and other 
types of limb coordination tasks (Fuchs & Kelso 1994, Kelso 1995) provide a well studied 
domain of self-organizing behavior upon which to initially test our bottom-up neurological 
models.  We expect to build models that emulate the types of phase transitions observed in these 
coordination tasks.  This will provide alternative models of these self-organizing phenomenon to 
the traditional top-down models developed to explain such phenomenon.  This will also provide 
some simple domains in which to integrate perceptual and motor activities and to test the ability 
of our artificial limbic systems to self-organize behavior in ways that are similar to biological 
organisms.   

c. Real-Time Task Environments 
An interesting domain studied by psychologists is in the development of skills while 

performing certain motor tasks in a real-time cognitively challenging game, such as Tetris 
(Kirsch & Maglio 1994).   In this demanding environment, many behaviors are observed that can 
not be explained from a classical perspective (sense-act-plan).   Many actions, called epistemic 
actions by Kirsch and Maglio,  do not directly serve or bring the player closer to a goal.  Some 
rotations and translations are performed simply to manipulate the perceptual environment.  It is 
believed that these types of manipulations are performed because, contrary to a classical 
perspective, people do not build complete complex representations of the task domain.  Such 
complex representations are too computationally expensive to be supported in the demanding 
real-time task environment.  Instead people use the environment itself as its own representation, 
and simple physical manipulations of the “environment out there” are actually types of 
representational manipulations.  The purpose of such epistemic actions are not directly relevant 
to a goal, but serve to change the perceptual environment in such a way that new affordances or 
opportunities for action may be directly observed from the situation.  One objective of this 
research is to develop behavior producing systems that demonstrate these types of epistemic 
actions.   Systems observed to display these types of behavior can be argued to be cognitively 
plausible models of action selection, and will indicate the validity of our embodied 
representational mechanisms as models of biological embodiment. 

The Tetris environment, and other real-time demanding games, are also wonderful domains 
for studying the developmental process of skills from simple novice behaviors to advanced 
expert skills.  Such development of skills can happen quickly in humans, in a matter of hours of 
interaction with the task environment.  From simple motor skills and goals, players typically self-
organize more complex and sophisticated patterns of behavior.  Not only do the behavior 
patterns organize, but also the structure and type of goals pursued by the players evolve as they 
gain experience with the task environment.  We expect to build models that will be able to 
display some of these characteristics, to organize increasingly sophisticated levels of behavior by 
interacting with the environment.   
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Such real-time demanding task domains also offer opportunities for the further  study of the 
formation of embodied category representations.  In particular, we will need to develop 
neurological models that can operate in real-time, using frequency based signaling rather than a 
simulated series of time steps (Verschure et. al 1995).  In forming categorical and behavioral 
patterns in real-time, we will need to obey the dictate of embodied cognition to avoid excessive 
world modeling and gear that which is required to the demands of real-time, behavior-producing 
systems (Clark 1997).   

d. Mobile Robotic Simulators 
After the development of small models for isolated cognitive tasks, we will begin the 

development of more complex and complete autonomous agents.   The goal of this phase of the 
research will be to develop models that could one day be used in real world robotic agents.  We 
will begin by building agents for autonomous mobile robot simulators for various simple tasks.  
We expect to display the ontogenetic development of behavior in a more complex and realistic 
perceptual environment than that offered by the initial task domains of the research.  Tasks will 
range from simple navigation and map building tasks, to the self-organization of higher level 
behaviors in the pursuit of endogenously defined goals.  Our first environment will be the 
Khepera simulator environment. 

 
 
 
 
 
 
 
 
 
 
 

 


