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AFRL Human Effectiveness 

 Human effectiveness strategic directions are 
focused on  
 helping the information warrior think, 

decide, and act in new ways,  

 reducing decision times, 

 improving decision quality through 
improved human-system interfaces and 
processes, 

 protecting all airmen in all offensive and 
defensive environments. 

 

 Some Relevant Tasks: 
 Enable warfighters to train as they fight by 

advancing education and training 
technologies and methods to provide 
required mission competencies for the 
expeditionary aerospace force. 

 Enable improved decision effectiveness for 
all warfighters by advancing cognitive 
modeling science, task critical information 
portrayal, and decision support technology. 



Cognitive Modeling & Experiments 

 Understanding human 
cognitive processing 
 Perception-action cycle 

 Multi-sensory modalities 

 Experimental Techniques 
 Task critical information 

displays 

 Decision support systems 

 Human-computer & Brain-
computer interfaces 
 Scalp EEG arrays 

 Challenges in interpreting and 
modeling multi-channel 
recordings 

 High noise, high clutter 
problems 

 

 



Electrode placement display featuring areas of the brain (EGI, OR) 

Noninvasive Scalp EEG 

 Scalp EEG 

 Non-intrusive, but very difficult to look beyond the skull 



Cognitive Features of EEG 

 EEG data example – 

Estimating PSD slope 

 Correlation with cognitive 

state 

 Cognitive Activity 

 Resting 

 Sleep  

 Medical conditions 

 



Dynamic Systems Phenomenology  

of Cortical Neurodynamics (Freeman) 

The system maintains a state space 

dominated by a high-dimensional, 

flexible, evolving attractor landscape.  

 

 Input is by waves at the mesoscopic 

level from cortices that overlap but need 

not be synchronous.  

 

 Operation is by global phase transitions 

induced aperiodically by spatial 

integration of the wave packets.  The 

transitions lead to hemisphere-wide 

spatial amplitude modulation patterns.  

 

 Output is by the spatio-temporal 

integration at subcortical targets 

simultaneously of the covariant fraction 

of the total variance of hemispheric 

neural activity.   

Relevant Concepts in Physics and Chaos  
•Scale free networks (Barabasi, Albert)  

•Small worlds (Watts, Strogatz) 

•Chaotic Intinerancy (Kaneko, Tsuda) 

•Metastability (Kelso, Haken) 

•Frustrated Chaos (Bersini) 



Phase Cones in EEG 

 

 Amplitude modulation in 

rabbit EEG 

 Traditional approach 

 Numeric fit of dominant 

phase cone (Freeman et 

al, 1996+) 

 Major properties revealed 

but tedious 

 Dynamic Logic 

 A potential robust method 

of detecting multiple 

phase cones 

 Present work  

 



Rabbit Intracranial EEG Data  

Visual EEG Analytic Amplitude    Visual EEG Analytic Phase 



Model of EEG Phase Cones 

• Multiple phase cones simulated 

• Simultaneously coexisting/overlapping cones 

• Increasing/decreasing in time 

• Positive and negative slopes 

• Explosions and implosions 

• Previous work: Gaussian mixture  Now: non-Gaussian 

 



Simulated Phase Cone Data 

Noisy Data Simulation       Cones without Noise       



MODEL FIELD THEORY  
 

 Perlovsky in past 20+ years 
 Orders of magnitude improvement in difficult pattern recognition problems 

with high level of noise and clutter 
 

 Signals and Concept-Models  
 signals X(n), n = 1,…,N 

 parameters Q=[Q1, Q2, ..., Qs], 

 Consider k models, k =1 clutter (noise), the rest 

 P(X| Qk), k=2,…, K , components with their own parameters 
 

 Improve object-models while understanding signals 
 associate samples n with models k and find parameters Qk 

 Model complexity increases with understanding data and avoids 
combinatorial explosion 
 

 Learning instinct  
 Maximize similarity between signals and models 

 L: likelihood of similarity  

 LL: log-likelihood 



Top-down and bottom-up dynamics in  

visual recognition 

 

Bar et al. PNAS, 2006. 



MODEL FIELD THEORY  

 
 Log-likelihood or mutual relevance: 

 

 

 p(Xn|Qk) – pdf of kth  mixture component  

 p0(Xn) – distribution of data points 

 rk(t) – relative weight of component k 

 Optimize parameters maximize LL 

 Normalization of total energy, introduce Lagrange multipliers 

and define association probabilities 

 
 

 Max LL 

 

 



Optimize MFT Parameters: 
Component power is independent of parameters 

 

 



Optimize MFT Parameters: 
Component power DOES depend on parameters 

 

 General form of LL equation 

 

 

 

 Here Lagrange parameter is given by 



Solution of MFT equation: Non-Gaussian Cones 

 Model equations for components 
 Cone evolution equation (cylindrical) 

 

 

 Update of apex spatial coordinate 

 

 

 

 

 

 Update of time initiation 

 

 



MFT Algorithm  

 

 Start with a set of signals and unknown models 

 Parameter values Qm  
 

 Improve parameter estimation 

 Iteratively learn the parameters 

 Learn signal-contents of objects 

 Continue iterations   
 Similarity of model and data increases on each iteration 

 Until convergence  
 



 Conclusions 

 Initial results promising 
 Good estimation of parameters, modify 

energy function 

 Future of applying MFT 
 Non-intrusive cognitive monitoring 

 Novel and until now unreachable & 
unseen details of cognitive processing 

 MFT is cognitively motivated: 
 brains likely exhibit iterative learning as 

formulated in MFT 

 EEG analyzed by MFT algorithm can 
identify such behavior 


