Fedtx

INSTITUTE OF
TECHNOLOGY

DRONES Workshop @ FIT
May 13, 2016

Bl vevisris

9,
M

Integrated Platforms and Algorithms
of Multisensory Data Capture &
Decision Support for Autonomous Vehicles

A biologically-inspired Model and Control

Algorithm for Decision Support of Mobile

Robots

RObert Kozma (PI) THE UNIVERSITY OF
Yury Sokolov and Miklos Ruszinko MEMPHIS.



Project Research Objectives

Development of an autonomous navigation and control system
for a vehicle using:
— Integrated platforms and algorithms of multisensory data capture;

— Robust decision support systems in dynamically changing, complex

environments.

Extending on results achieved in NSF DMS-13-11165 project:

— US-German research on strategy change in complex dynamically

changing environments

MEMPHIS.
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Talk Outline

Introduction to Framework of Autonomous Decision Support

Foundations of Learning in Cognitive/Biology Domains

. The “AHA” moment of learning/decision making

Main Results in Math/Graph Theory

. Sudden changes (phase transitions) in structure and dynamics

Robotics Implementation Domain

. Establish a link with biological and theoretical results

Conclusions
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Research Tasks

1. A mathematical and computational model of multi-
sensory channels for robust navigation, and
decisions support (strategy change).

2. Robot platform to implement and test the
conceptual integration model.

3. The performance of the developed system will be
evaluated using quantitative metrics, such as:

Robustness to noise and incomplete data;

Fast and efficient evaluation using limited resources;

Generalization to unforeseen scenarios;

Resistance to system degradation.
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Biological /Cognitive Framework

THE UNIVERSITY OF

MEMPHIS.




Intentional Control Cycle
(W] Freeman)

1. PREDICT: Form hypotheses about expected future
states, and express these as goals such as safety, fuel,

or temperature control.

2. TEST BY ACTION; Formulate a plan of action, and they
must inform their sensory and perceptual apparatus

about the expected future input.

3. SENSE: Manipulate sensin]g channels, take

information Iin the form o
sensory ports.

4. PERCEIVE: Generalize, abstract,
categorize, and combine into
multisensory percepts (Gestalts).

5. ASSIMILATE & UPDATE: Use new
data to verify or negate the
hypotheses and update the brain
state, including information about
the location in the environment.
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Book on Cognition & Decision Making
(RK, WJF, 2016)

Loty 1 S detn, Deirinn ol (gt TV

Robert Xorma
Waiter ). freeman

Cognitive Phase
Transitions in the Cerebral
Cortex - Enhancing the

Neuron Doctrine by
Modeling Neural Fields

Collective dynamics in a football stadium
Emergent self-organized dynamics with many
interacting components




Gerbil Experiments
@VLeibniz Institute of Neurobiology, Magdeburg, Germany
Prof Frank Ohl’s Group

Ohl, Scheich, reeman, Nature (2001)

* Rectangular electrode array w/ 20 channels (5 x 4
matrix)

» Stainless steel wire, @ 76.2 um, impedance: 50 — 500 kQ

* Chronic implantation of 5 x 4 electrode array on top of
primary auditory cortex (A1)

* Recording of epidural potentials during behaviour




Learning Paradigm

Discrimination of frequency modulated tones in the shuttle box

Go-tone:

sequence of ‘rising’
FM-tones (2—-4 kHz, 200
ms duration)

NoGo-tone:
sequence of ‘falling’
FM-tones (4-2 kHz, 200

ms duration)




Percentage of correct trials (i.e. w/o shock)

Original Motivation of Strategy Change
Manifested in Learning - Examples

Gerbil #6 Gerbil #4
(training sessions for 6 days) (training sessions for 4 days)
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Lessons Learned from Animal Experiments
- Understanding Strategy Change

Strategy change can be defined as the change in
action selection and/or action planning while a
previously established overarching goal is
maintained.

Strategy change is often manifested via significant
“sudden” variation in behavior and performance.

Such behavior can be interpreted as the “AHA”
moment of sudden understanding and deep insight.
There are experimentally observable changes in the
neural structure associated with strategy change.

The structural changes can be modeled through
phase transitions in the neural network as a large
graph and the dynamics of an activation propagation
process.

—= NEXT: Use Graph Theory in mathematical modeling.




Graph Theory Approach to
Learning in Networks
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Random Graph Model over 2D Lattice

Start first with Z? lattice. We take a (N +1) x (N + 1) grid and
for simplicity assume periodic boundary condition. Thus, we have
a torus T2 = (Z/NZ)?, with the short notation Z%. The set of
vertices of G consists of all the vertices of Z%, and we will not
change them. All the edges from the torus Z,zv are presented in the

graph.
Additionally, we introduce the random

edges. For any pair of vertices that are at
distance d apart of each other we assign
R € probability of edge that depends on the
(/ graph distance d:
\ pa =P ((x.y) € E(Gg,,) and dist(x,y) = d)
c

NA’



Graph Model: Short and Long Edges

Random edges of GZ,%,,p are called long, s.t., there is an edge
between a pair of vertices with probability

. C
pa =P ((x,y) € E(Gg,,) and dist(x,y) =d) = 7=, (1)

The edges of the grid are called short.

//6;\’)’2
/‘Y1 (
T \
d =3 dry =5
Pd; = Pdss

that is, for long edges it is more likely to have a shorter edge than
a longer one.



Brain Connectivity

There is one long connection
(axon) out of 1000 synapses of
a neuron. If we consider two
sets of connections between
neuropopulations where the
first set contains only axons
and the second set have all the
others then the ratio will still
be the same 1:1000.

Fig.: de la Iglesia-Vaya, M.,
Molina-Mateo, J.,
Escarti-Fabra, J., Kanan, A.S.,
Marti-Bonmati, L., (2013)




Previous Random Graph Models

e “Small world I": Starting from a circle lattice with n vertices
and k edges per vertex, rewire each edge at random with
probability p, regularity for p = 0 and disorder for p = 1.
(Watts, D. J., and Strogatz, S. H., Nature, (1998))

@ “Small world II": Again an n-cycle with its edges is considered.
In contrast to the original formulation, however, random edges
were added with some p instead of rewiring the edges.

(Newman, M. E. J., and Watts, D. J., Phys. Rev. E, (1999))

@ “Long-range percolation graph”: An undirected graph with
the node set {0,1,...,N}9 has edges (x, y) selected with
probability 1 — exp(—B/|x — y|?) = B/|x — y|® if |[x — y| > 1,
and with probability 1 if |/ — j| = 1, for some 3,s > 0.
(Benjamini, I., and Berger, N., RSA (2001);

Coppersmith, D., Gamarnik, D., and Sviridenko, M., RSA



Diameter is of Logarithmic Order
in the System Size

Observation. Signals in networks spread fast, hence, the diameter
of any graph modeling networks has to be small. The diameter

D(GZ,zV p) is logarithmic in the number of vertices, i.e., it has small

world property.
Theorem (JKRS'15)

There exist constants Cy, Cp, which depend on c¢ only, such that
for the diameter D(GZ,ZV p) the following holds

im P (q log N < D(Ggz ,) < Czlog N)) _ 1.

N—oo

Thus, it is easy to turn c for big networks with, e.g., 108 nodes,
e.g., www. So that it is represented by 10* x 10*. Diameter w/o
long edges = 10,000, but w/ long edges 4!



Poisson Degree Distribution

The probability that a vertex has degree k considering only the
long edges is given by

c \Ni—ki
P(W = k) = k2+;w_k ]:[2( )( ) (1_m) . (2)

However, we can approximate it by Poisson Po(\) distribution with
A =4clIn2, that is

e~ M\K 1
P(W=k)= I +O(N). (3)
Moreover, we have that the total variation distance
drv (L(W),Po(})) = Z IP(W =) —-P(Y =j)| = O(1/N),
_]>0

(4)



Activation Process: Step-by-step
Generalized Bootstrap Percolations
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Mean Field Approximation
— Example of Pure Excitation

Let p; be a proportion of active nodes at time t, i.e. p, = A(t)/N?
then the evolution of p; is defined as

N?pes1 = Bin(N?pe, £ (pe)) + Bin(N*(1 — pe), f~(pr))  (6)

where
= &2/ n : .
fr(x)= ) P(deg(v)=n—4)) (,. B 1>x’"1(1 — x)"it
n=4 i=k
(7)
N?—1 nN |
()= P(deg(v)=n—4)% (i)x'(l o (@)
n=4 i=k

Moreover, given p¢, pt+1 has mean f(p;) where

f(x) = xf*(x) + (1 —x)f~(x), (9)



Main Result:
Phase Transition in Mean Field Approximation

Theorem (JKRS'15)

In the mean-field approximation of the activation process A(t) over
random graph GZ%, p, there exists a critical probability p. such that
for a fixed p, w.h.p., all vertices will eventually be active if p > pc,
while all vertices will eventually be inactive for p < p.. The value
of pc is given as the function of k and A\ as follows:

(i) For k =0 and any A all vertices will become active in one
step with high probability for any fixed p > 0.

(i) For k =1 and any A, pc =0, i.e., for any fixed p > 0, all
vertices will eventually become active with high probability.

(iii) For k =2 and any A, pc = x2(A), where xp(A) < 0.132 is a
nontrivial solution to x = fp(x).

(iv) For k=3 and any A, pc = x3()), where x3(A) < 0.5 is a
nontrivial solution to x = f3(x).




Emergent Oscillations (Region |)
Network with Excitatory & Inhibitory Nodes
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Emergent Oscillations Interpreted as
Learning Effects

DAMPED TO FIXED POINT

UMIT CYQLE

ZERO FIXED POINT



Concept of Implementations on
Robotics Platform
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Example of Sensor Modalities
Mars Rover SRR-2K Prototype

Stereo camera (Hazcam)

A pair of cameras
with 130 degree FOV

Goal camera (Viewcam)
mounted on a manipulator arm
20 degree field of view;

Internal gyroscope (IMU)

registering along coordinates
pitch, roll, and yaw

Crossbow accelerometer (ACC)
X, Yy, and z coordinates

Sun sensor (GPS)

for global positioning information




Linking Animal Experiments with Robotic Platform

Gerbil Mobile Robot
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Task: Move to/ stay in L/R Move to target using

correct compartment Left/Right/Forward/Back steps
Senses: Auditory (hearing) Visual (stereo camera)
Reinforcement: Shock in grid Shaking through accelerometers

Similar to phase transition in animals to a learnt state, dynamics of
the rover autonomous learning (adaptation to a new environment)
may be described by the same mathematical model.

This inspires the possibility to transfer tools for data analysis in
biological system to an autonomous device.
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