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1. Executive Summary 

1.1 Project Objectives 
The project goal is to substantially advance the state-ol-art of artificial intelligence (AI). 

As a major approach to achieve this goal, we increase our understanding of the mechanisms that 
underlie biological intelligence. We avoid methods and systems that may appear intelligent, but 
are, in fact, hard coded and not intelligent. Many current systems give the appearance of 
intelligence; however, these systems cannot adapt to changing circumstances or truly interpret and 
make decisions based on input. Systems that can achieve flexible adaptation and decision-making 
represent the future of computer technology and are the target of this Superior AI project. 

This work builds energy aware neurocomputers to solve problems that cannot be addressed 
by today's AI technology. Successful completion of this work allows going beyond the state-of- 
the-art AI, which is represented by Deep Learning (DL). In the overall problem setting of DL, 
resource constraints are often ignored, or have secondary role. DL typically requires huge amount 
of data/ time/ parameters/ energy/ computational power, which are not readily available in various 
scenarios. Target applications include rapid response to emergency situations based on incomplete 
and disparate information, supporting graceful degradation in the case of physical damage or 
resource constraints, and real time speech recognition in noisy and cluttered background. 

In spite of the drastic cuts in project budget by the Program Manager from Year 2, and his 
demand of eliminating some of the tasks, reorganize the others, and completely deleting the final 
year of this 4-year project, several breakthrough results have been accomplished during Yl-3, as 
planned. He we summarize the areas with breakthrough achievements: 

1.2 Main Breakthrough Achievements 

1.2. A Developed a novel energy-aware oscillatory memory array (CAN) 
Developed an energy aware computing paradigm, which is based on coupled CAN (Capillary- 
Astrocyte-Neuron) arrays motivated by brain structure and operation. CAN arrays serve as basic 
building blocks of novel dynamic memory devices. 
Built a coupled array of CAN units. Produced collective behaviors such as synchronous activity 
and coordinated firing in specific narrow-band oscillatory frequencies. Modulated the frequency 
of collective oscillations based on the connection strength between oscillators and implemented a 
correlational learning rule. Developed metrics to evaluate energy efficiency of computing. In the 
effort to construct artificially intelligent devices that can perform perceptual, motor, and cognitive 
tasks at the level that matches human performance, one important measure of the efficiency is the 
power consumption in comparison to brain. This property of CAN arrays is a key factor to alleviate 
the exponentially increasing computational demand of today’s computers, faced by reaching the 
limits of Moore's law, when targeting to achieve human-like performance. 

1.2. B. Established a software framework (BindsNET) for oscillatory neural memory. 
Created the BindsNET software platform, which provides a unified environment to construct 
hierarchical computing solutions using energy aware computational and dynamic memory 
principles, using Py Torch framework. 
BindsNet is based on spiking neural computing units, which are connected according a hierarchy 
of architectures of increasing complexity, and trained using unsupervised, reinforcement, and 
supervised learning. The BindsNET repository has been released as an open source at GitHub. In 
addition to the source code, we made it easy to install using pip package manager for a range of 
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practical applications. BindsNET has been extended to solve advanced AI machine learning tasks 
using convolutional networks, pattern matching, reinforcement learning, Q learning, and Deep 
Learning in multilayer architectures. Beyond standard image recognition tasks, pipelines have 
been developed in BindsNET to address challenges in dynamically changing environments. 

I.2.C. Applied BindsNET to solve practically important AI tasks with results matching or 
even exeeeHing the perfnrmunt'e of the hest AI in the world. 

Implemented local and global learning in spiking NNs using BindsNET platform. Showed that 
our results are at the same level or in some case superior to existing approaches. 
Incorporated various local (unsupervised) and global (supervised) learning rules on the software 
platform and combined them to achieve improved performance. Converted traditional Deep 
Learning (DL) network into Spiking Neural Networks (SNN) and demonstrated that SNN can be 
used in reinforcement learning paradigm. Implemented the developed learning approaches in 
several AI problems, such as classification and computer games. Showed that our implementations 
achieve similar performance as state of art, in spite of significant simplifications in the simulation 
of the network components. Importantly, our SNN-based approach produced improved robustness 
compared to top-of-the line Deep Learning solutions. 

1.3 Organizational Issues and Pitfalls 

Our project started with four Tasks, which continued during the first 2 years. Specifically, in 
Year 1&2, our project had the following 4 Tasks: 

1. Local Learning: Developing biologically inspired learning algorithms with local learning 
rules to significantly improve learning efficiency; 

2. Neuromorphic Architecture & Dynamics: Modeling the brain’s layered architecture and 
dynamics to improve state-of-the-art deep learning neural networks; 

3. Energy Efficiency: Drastic improvement of energy efficiency of AI computing through 
modeling energy utilization in brains sustaining higher cognitive functions; 

4. Hardware for Oscillator Computing: Building cortical array architectures in analog 
hardware with periodic/quasi-periodic dynamics for neural computation using less energy. 

Year 3 (Year 4 has been eliminated): 
During Year 2, our DARPA PM requested eliminating the hardware Task 4. Accordingly, in 
Year 3 the project had only 3 Tasks, and these tasks have been reorganized following the PM 
requests. In Year 4, our funding was completely cut, in spite of the fact that our demonstrated 
excellent results with respect to state-of-art AI. W e objected the PM decision, which we 
considered unjustified and not warranted by the results. In Year 3, we had the following 3 tasks: 

1. Energy Efficiency (CAN): Expanded the CAN model (units) to CAN memory arrays. CAN 
arrays serve as memory devices encoding input data into sequences of oscillatory patterns. 

2. Software Platform (BindsNET): Combined oscillatory/spiking computing and various 
learning approaches/architectures, including global gradient descent, local plasticity, 
reinforcement, and transfer learning. 

3. Solving AI Problems: Implemented the developed oscillatory machine leaming/AI 
approach to demonstrate superior performance in several practical machine learning tasks. 

5 



1.4 Overall Achievement Statement 
In spite of the pitfalls due to the unsupportive acts of the PM. the Superior AI project achieved its 
stated goals, within the constraints of the reduced 3-year span with 3 Tasks, instead of the 
originally planned 4-project with 4 main tasks. 

2, Summary of Major Achievements 

2.1 Taskl: Developing Local Distributed Learning and Integrate with Different Learning 
Modules (Task 1 in Yl<&2, Task 2 in Y3) 

2.1.1 Task Statement 

Biologically realistic spiking neural networks are often referred to as the third generation of neural 
network models since they directly hold the capability for the processing of time-varying input. 
Currently no commonly accepted, effective learning algorithm exists for spiking neurons. To 
achieve successful AI implementations, it is crucial to build learning rules for spiking neural 
network. Our results achieved at the earlier phase of the project, local learning using spike timing 
dependent plasticity (STOP) has demonstrated advantages in reduced memory requirement, 
massive parallel processing, and online learning with very rapid convergence. Due to the 
unsupervised nature of STOP, its accuracy is lower than supervised DL, thus combination with 
alternative learning schemes can be beneficial. We also need an efficient learning algorithm for 
learning in CAN arrays that scales welt with large populations of neurons. 

2.1.2 Developed Solutions and Results 

a) Developed a convolutional neural network with patch connectivity trained by STOP. We 
implemented various learning methods to solve classification tasks. We combined 
unsupervised learning (STDP, Hebbian) with reinforcement components for improved 
accuracy. In addition to STDP rule, we developed various local (unsupervised) learning 
algorithms, which can be used in combination with global (supervised) and reinforcement 
learning, to solve practical machine learning tasks. 

b) We improved on previous work combining Reinforcement Learning (RL) and local rules, 
which resulted in network instability and poor convergence. We improved previous 
algorithms updating a fraction of the connections at any given time, with decreasing 
percentages plastic over time. 

c) STDP learning performs computations using data that are available locally at each node; 
therefore, it does not need to communicate with an external memory unit. This eliminates 
the requirement for external memories during the computing process and the computational 
unit acts as memory, thus ideally suited for memristor hardware implementations. 

d) Our approach has the crucial advantage that it allows massive parallelization due to the 
local nature of learning, while Deep Learning must cache the results in layer-wise 
computation and wait for the outcomes of the previous step from each consequent layer. 

e) Our approach converges up to 10-times faster to the specific accuracy level than deep 
learning, which often indicates a reasonable compromise between somewhat decreased 
accuracy of unsupervised learning at the price of increased speed of computational 
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convergence. 
0 In order to link our approach to existing feature extraction algorithms, including multilayer 

convolutional Deep Learning, we implemented a topological learning rule according to 
which nearby nodes are more sensitive to similar input patterns. We obtained an ordered 
map of feature detector neurons, which can be used to achieve improved accuracy as an 
intermediate layer in a classifier CNN. 

g) Going beyond image classification task, we implemented software framework to work 
efficiently in dynamic machine learning problems, such as game playing with ATARI and 
geo-spatial anomaly detection with Numenta testbed. Our spiking NN shows improved 
performance w.r.t. Deep Q-Learning (DQL) in the ATARI breakout benchmark task, when 
transferring DQL weights to our proposed stochastic spiking NN. 

h) We developed the software platform BindsNET, which provides a unified framework to 
construct hierarchical computing solutions using energy aware computing and dynamic 
oscillatory memory principles. We released on github the BindsNET repository as an open 
source package. We are adding more features to BindsNET that allow the implementation 
of CAN arrays and relevant learning algorithms. 

2.2 Task 2: Designing a Hierarchy of Network Structure and Dynamics Motivated by Brains 
(Task 2 in Y1&2, Task 1 in Y3) 

2.2.1 Problem Statement 

Today’s digital computers encode data in fixed strings of digits, in which memory capacity is 
proportional to the available memory units. Dynamic encoding produce explosion of memory 
capacity, with potential exponential memory with respect to memory units. 

2.2.2 Produced Research Outcomes 

Develop more complex architectures with feedback loops and recurrent connections, which allow 
memory arrays with dynamic encoding, with applications for neuromorphic hardware. We identify 
lattice architectures with feedback connections producing long oscillations in their activity 
patterns, which can be used as memory patterns. Properly tuned recurrent networks with long 
oscillations can be used to build powerful dynamical memories. We integrate the results on lattice 
dynamics with the energy aware computing principles with CAN units. 

a) Percolation processes have been implemented over graphs with 2D layers of excitatory 
nodes coupled with inhibitory nodes. The observed spatio-temporal dynamics have been 
evaluated both theoretically (proofs) and computationally (simulations). The obtained 
results serve as mathematical basis of a novel A1 approach using sequential pattern-based 
computing 

b) The model has been simplified to allow rigorous mathematical analysis, while it maintained 
key properties of the spatio-temporal dynamics. We derived parametric approaches to 
control the dynamics to produce sequences of spatial patterns. 

c) We demonstrated that starting from a background oscillatory state, various inputs lead to 
oscillatory patterns specific to that input, and the system returns to the background 
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oscillatory state once the input is removed. These results serve as a conceptual framework 
for building spiking neural network-based dynamical pattern-based memories. 

d) We provide theoretical proof of the existence of a range of initialization probabilities 
(seeds) that maintain sustained oscillations with limit cycle or chaotic behavior as the 
function of reset level (m) and the type of update rule (k). We showed that the oscillations 
are robust to changes in initialization for most parameter values, thus exhibiting strong 
mixing and effective memory-less dynamics within the specific range of parameters, with 
the exception of larger reset values (m). 

e) Computer simulations provided evidence of chaotic behavior with fractal boundary regions 
for higher values of the reset parameter (m). Extensive simulations produced a diagram 
with bifurcation and tri-furcation properties, evidencing highly intermingled limit cycle 
and chaotic attractor basins. 

1) These results provide key insights into dynamical memory properties of the percolation 
model, when input patterns can be encoded into attractors with limit cycles of specific 
lengths, or chaotic attractors (practically infinite cycle length). We studied how to store 
and recall specific inputs in the attractors with multiple wings. The breakthrough aspects 
of these results for AI rest in the exponential memory capacity attractors with very long 
cycles (possibly chaos), and the instant recall of the stored patterns without the need for 
lengthy search and related convergence process required in more traditional, convergence- 
based (fixed point) memory devices. 

g) We described the properties of very long cycles (VLC), up to a duration of 10A5 time steps. 
A key result is that VLCs can lead to the emergence of metastable spatial activity patters, 
which are sustained for several 100. or 1000 time steps, they evolve slowly, and ultimately 
dissolve to random background activity. Crucially, these metastable patterns emerge 
spontaneously and predictably, and clearly distinct from the fluctuating background. In the 
context of the dynamic computing principles of our project, these metastable patterns are 
the candidates of intermittent ‘symbols,’ that are the basis of the computation in our 
dynamical memory device. 

2.3 Task3: Design and Analysis of Energy Efficient Computing Models 
(Task 3 in Y1&2, Task 1 in Y3) 

2.3.1 Problem Statement 

Studying efficient energy consumption in brain's intelligence helps us to design AI that is energy 
efficient. It is crucial for new AI to develop energy aware model for higher energy efficiency in 
AI hardware. Energy efficiency is a fundamental requirement to achieve superior AI beyond the 
state-of-art. We develop superior AI in which energy constraint leads to intelligence. Moreover, 
developing energy coupling models for brain neural activity is a key component to interpret brain 
imaging data by fMRJ that are based on BOLD (blood oxygen level dependent). 

2.3.2 Produced Research Outcomes 

Developed the CAN mode! (Capillary-Astrocyte-Neuron) by modeling the brain energy use, in 
which spiking neuron populations are combined with metabolic equations in a unique way. 
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a) One salient point of the CAN model is the coupling of physiological processes at a broad 
range of time scales with many orders of magnitude differences: (1) fast neuron spiking at 
milliseconds scale; (2) metabolic processes at a time scale of fractions of a second; (3) and 
vascular effects of blood flow (energy supply) at much smaller time scales of 10s or more. 
CAN allows to study coupling between computing (spiking neurons) and energy unit 
(astrocytes). 

b) We demonstrated that the amount of available energy modulates the oscillation frequency 
of interacting computational units (spiking neurons); more energy inflow (via vascular 
input) produces increased frequency of oscillations (spiking). Moreover, for a given level 
ol energy supply, we can produce transitions between highly synchronous oscillations 
(resonances) and desynchronization effects by changing the coupling coefficient from the 
computational units (neurons) to the metabolic components (astrocytes) acting as a control 
parameter. 

c) We analyzed in CAN arrays the coupling between fast computing (spiking neurons) and 
slower energy supply (astrocytes), as well as the frequency modulation and 
synchronization effects due to energy constraints. The introduced synchronization control 
algorithm is crucial in our approach, as synchronization-desynchronization transitions 
create the sequential memory patterns as key to the brain-inspired encoding and recall. 

d) The demonstrated synchronization control algorithm is a crucial advantage of our 
approach, as synchronization-desynchronization transitions allow rapid response to 
dynamically changing external conditions in the environment and thus they manifest 
critical components of an emergency response system. 

e) In the case of a single CAN oscillatory units, we studied the feasible range of parameters 
maintaining oscillations of energy variables in a stable range, at the same time producing 
quantifiable variation in the oscillatory frequency (computational capability) as the 
function of available energy resources. It is also important that the feasible parameters 
produce high synchrony of oscillations in the single CAN computational unit. 

f) We developed the blueprint of coupled CAN oscillator arrays. The input data are encoded 
in the spatially distributed oscillations in these arrays coupled with modifiable links 
(synapses), following the STOP learning rule. 

g) We implemented a learning algorithm between CAN units of a CAN array based on 
Hebbian correlation principles, when the connection between two units is strengthened 
(weakened) when the activities of these nodes are positively (negatively) correlated. The 
learning algorithm is operational, and it serves as a basis for encoding and recalling input 
data for actual machine learning tasks. 

h) We analyzed in CAN arrays the coupling between fast computing (spiking neurons) and 
slower energy supply (astrocytes), as well as the frequency modulation and 
synchronization effects due to energy constraints. The introduced synchronization control 
algorithm is crucial in our approach, as synchronization-desynchronization transitions 
create the sequential memory patterns as key to the brain-inspired encoding and recall. 
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2.4 Task 4: Super-Turing Analog Oscillatory Hardware Platform (Task 4 in Y1&2) 

2.4.1 Problem Statement 

This task supports other parts of the project by producing a fabricated chip that implements 
oscillatory computing. We build an electrical circuit implementing the energy aware 
computational model. This includes the construction and experimental evaluation of analog 
hardware and computer simulations to study their capabilities and limitations for special purpose 
computation. We fine-tune the dynamics, including frequency of the oscillations and the value of 
the amplitude synchronization measure. These circuits can be built from analog components and 
run at lower power. 

2.4.2 Produced Research Outcomes 

Designed a chip for neuromorphic computing. The implementation includes simulations of 
architectures with feed-forward and feedback connections; the connections are fixed (non- 
adaptable) at this stage. The system receives inputs from a computer interface and the oscillatory 
pattern readouts are evaluated using a multi-channel analyzer. 

a) ASIC chip has been designed, which functions as a Quasi Periodic Oscillatory Machine 
(QPOM) for pattern recognition. The spiking neural network-based Q-POM performs real¬ 
time computations on continuous streams of data. The information is stored as spatio- 
temporal patterns inside the recurrent neural network during training phase. We have 
simulated the music application in software, and the specifications for neuromorphic chip 
were finalized. 

b) The architecture of chip was then finalized after considering different design alternatives 
with minimum area and power in mind. The RTL design and behavioral simulation of the 
chip is completed except for the interface module. Design libraries for chip have been 
procured from MOS1S. The memory compilers were obtained from ARM. 

c) To facilitate experiments, we have built a 16-neuron system with patch panel for quick 
rewiring and circuit evaluation with a multichannel digital signal analyzer; see photo in full 
report at the end of this document. Though this seems like a small system, it is important 
to remember that a ring of 16 neurons, of the type we have been experimenting with, is 
able to support 143 stable memory states. In previous reports we showed an exponential 
curve of the number of states vs. the number of neurons. 

d) Aiming at FPGA platform, we implemented a single Izhikevich neuron and two interacting 
neurons in Verilog. We also implemented the multiply and accumulate model for creating 
a network. Behavioral simulation was done with 2 neurons. In the future we will add the 
metabolic system with two equations to produce a very simple CAN model. 

e) We planned to scale up the design to a network of 48 CAN units with neurons and 
corresponding metabolics. We plan to synthesize design and put binary in ZedBoard and 
explore analog implementation. These plans were not realized as Task 4 on hardware work 
has been terminated in Year 2. 
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Book/Edited Volume (1): 

1. R. Kozma. C. Alippi, Y. Choe, C. Morabito, (eds.) "Artificial Intelligence in the Age of 
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315.(2018). 
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10. Kozma, R., J.J.J. Davis (2018) Why Do Phase Transitions Matter in Minds? J. 
Consciousness Studies, 25(1 -2), 131-150. 

11. Myers, M.H., R. Kozma (2018) Mesoscopic neuron population modeling of 
normal/epileptic brain dynamics. Cognitive Neurodynamics. 12 (2), 211-223. 

12. Kozma, R., R. Noack (2017) “Freeman's Intentional Neurodynamics,” Chaos & 
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Complexity Letters, 1 1(1). 94-103. 

13. Kozma, R., W.J. Freeman (2017) Cinematic operation of cerebral cortex interpreted via 
critical transitions in self-organized dynamical systems. Frontiers inSyst. Neurosci. 11(10) 
https ://vv vvw. front iersiti.org/articles/10.338 9. lns\ s.2017.00010/fnll 
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fundamental rhythm of brain function," Frontiers in Neural Circuits, 10, 115. 
https://w\vw. frontiersin .on>/art ides/10.3 789/fnc ir.2016.0011 5/full 

Conference papers (14): 

16. Aenugu, S., A. Sharma, S. Yelamarthy, H. Hazan, P. Thomas, R. Kozma, Reinforcement 
learning with a network of spiking agents. Neural Information Processing Systems 
(NeurIPS20I9), Neuro-AI Real Neurons-Hidden Units Workshop, Vancouver, Canada, 
December, 2019. 

17. Kozma, R., R. Noack, H.T. Siegelmann (2019) Models of Situated Intelligence Inspired by 
the Energy Management of Brains, Proc. IEEE Inf Conf. Systems, Man, and Cybernetics, 
SMC20J9, October 5-9, 2019, Bari, Italy, IEEE Press. 

18. Davis, J.J.J., R. Kozma (2019) Interpretation of Mesoscopic Neurodynamics by Simulating 
Conversion Between Pulses and Waves, Proc. 2019 1EEE/INNS Int. Joint Conf, Neural 
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19. Kozma, R,, R. Noack (2018) Energy-Awareness in Brains and in Brain-Inspired Models of 
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density EEG. Arrays Proc. 3rd INNS Conference on Big Data and Deep Learning 2018 
(BDDL201 8), April, 2018, Bali, Indonesia, Procedia in Computer Science, Elsevier, Vol. 
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22. Saunders, D.J., H. T. Siegelmann, R. Kozma (2018) STDP Learning of Image Patches with 
Convolutional Spiking Neural Networks, IEEE/INNS Int. Joint Conf Neural Networks 
(IJCNN2018), World Congress on Computational Intelligence, July 8-13, 2018, Rio de 
Janeiro, Brazil, pp. 4906-4912, IEEE Press. 

23. Andrade, G., M. Ruszinko, R. Kozma (2018) Graph Models of Neurodynamics to Support 
Oscillatory Associative Memories, IEEE/INNS Int. Joint Conf Neural Networks 
(IJCNN2018), World Congress on Computational Intelligence, July 8-13, 2018, Rio de 
Janeiro, Brazil, pp. 5052-5059, IEEE Press. 
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24. Hazan, H„ D. Saunders, D.T. Sanghavi, H.T. Siegelmann, R. Kozma(2018) Unsupervised 
Learning with Self-Organizing Spiking Neural Networks, IEEE/INNS Int. Joint Conf, 
Neural Networks (IJCNN2018), World Congress on Computational Intelligence, July 8- 
13, 2018, Rio de Janeiro, Brazil, pp. 493-498. IEEE Press. 
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Imaging Data, IEEE 2017 Symp. Series on Computational Intelligence (SSCI2017), Nov. 
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32. Saunders, D.J., H. T. Siegelmann, R. Kozma (2018) STOP Learning of Image Patches with 
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34. Hazan, H„ D. Saunders, D.T. Sanghavi, H.T. Siegelmann, R. Kozma (2018) Unsupervised 
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36. Ilin, R.. T. Watson, R. Kozina. “Abstraction Hierarchy in Deep Learning Neural 
Networks,” IEEE/INNS International Joint Conf. Neural Networks, IJCNN2017, May 14- 
19, 2017. Anchorage, AK, USA. 
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40. Kozma, R. “A Cognitively Motivated Algorithm for Rapid Response in Emergency 
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41. Kozma, R„ E. Rietman. Kick-off Meeting of DARPA Superior Intelligence Project, 
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4. Comparison of Actual Accomplishments with the Goals and Objectives 

4.1 Objectives and Goals according to Research Description Document (HDD) 
Exhibit B - dated: August 30, 2016, and descoped version, dated February, 7, 2019. 

The original project goals and objectives are summarized in Table !. Note that Year 1&2 were 
performed according to this plan. However, at the end of Year 2, Task 4 (Super-Turing analog 
hardware) has been eliminated. Moreover, in Year 3, the remaining 3 tasks have been reorganized. 
Finally, Year 4 funding has been cut by the DAPRA PM in spite of the project progressing 
according to the stated tasks and goals, with achievements surpassing the stated goals and 
objectives. 

Table 1. Summary of Superior AI Project Objectives and Goals 
According to ROD. Exhibit B. August 30, 2016 

tasks year 1 year 2 year 3 year 4 

1: Biological inspired 
efficient learning 

Technical report on 
new learning concepts 

Research paper on 
new learning concepts 

Improved brain-inspired 
controller 

Packaged trainable 
software, paper 

2: Human brain 
architecture and AI 

Network architecture: 
Bio-deep-recurrent 

Learn abstractions and 
classification 

Incorporate timeseries, 
model, software 

Neural Compiler and 
concluding paper 

3: Unique brain 
mechanisms 

Energetic analysis of 
brain sections 

Energy use from 
embryo to adult 

Dynamics of cognitive 
tasks, muiti-scales 

Software, research 
papers 

4: Super-Turing analog 
hardware 

Construct array 
cortical architectures 

Connect to sensory 
inputs, context activity 

Associations and 
complex feedback 

Phase-space study, 
research paper 

Table 2. Superior AI Project task structure in Year 3, 
following the revisions implemented based on the PM 
request; Febr-7-2019. 
The project focus has been descoped towards creating 
energy-aware neurocomputers for superior AI, based 
on oscillatory memory arrays. Task 1 has the goal to 
conduct feasibility studies of CAN-based oscillatory 
memories. Task 2 incorporates the oscillatory 
memories to solution algorithms for Machine 
Learning problems. 

Overall Project Achievement Statement 

In spite of the pitfalls due to the unsupportive act of the PM, the Superior AI project achieved 
its stated goals, within the constraints of the reduced 3-year span with 3 Tasks, instead of the 
originally planned 4-project with 4 main tasks. 
The goals and objectives specified for each task at a given phase of the project are given in 
details below, together with the delivered results. 

Project: Energy-Aware Neurocomputers 
development of dynamic oscillatory memories 

for Superior AI 

Task 1 
CAN Memory Array Feasibility Study 

_—_ 

Task 2 
Incorporate CAN Array in Machine Learning 

build software implementation of CAN array-based dynamic 
memories to solve practical machine learning problems 
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Objectives and goals of the Superior Al project 

- as specified in RDD Exhibit 2, see verbatim exerts from ROD below - 

Task 1: Biologically-inspired efficient learning 
The potential benefits include a learning rule, which is not only more robust computationally, but 
also can transfer the classification success of deep network to the temporal domain and include 
control as well. Since this research is challenging, we will start with simple architectures: multi¬ 
layer, small cortical like circuits, and then advance toward the rich structure taken from the human 
connectome architecture. Information regarding how the brain controls adaptation will be studied 
via neuroinformatics from existing databases, demonstrating changes among twins or different 
concentrations of chemicals correlated with plasticity. The software experiments will include: 
implementing changes in plasticity parameters, analysis of the systems by statistical and graphic 
studies, and testing on real-world data sets. 

Task 2: Human Brain Architecture and AI 
The risks are high. The challenge is in translating the neuroinormatics findings to artificial 
networks. Can be done in multiple ways but it will involve significant computational and 
mathematical modeling. Developing a compiler will be challenging, but personnel in the BINDS 
Lab has experience that we can draw on. As in Task 1, the systems will be studied by statistical 
and graphics techniques using real-world data sets. 

Task 3: Unique Brain mechanisms {energy management) 
Because our approach is two-fold with each approach orthogonal to the other, the risk is 
moderate. The main initial work will be data cleaning and parsing, all solvable through 
exploratory and graphical data analysis. 'The more challenging part will be to integrate these 
disparate approaches. It would be nice to combine the tw’o orthogonal approaches. How to do that 
is not obvious and will require exploratory computational studies. 
The first approach involves using transcriptome data overlaid on protein-protein interaction 
networks. From this we can compute the Gibbs free energy. Transcriptome data are available for 
human brain development, brain diseases, and brains that did not develop properly (e.g. too few 
synapses). 
The second approach involves using ECoG, fMRI and MEG data from Allen Brain Atlas. Such 
data were collected during specific cognitive tasks. Using these data, we will be able to 
incorporate into neuronal modeling energy changes and thus build more biologically realistic AI 
systems. 

Task 4: Super-Turing analog hardware 
This is a high-risk task. The primary risk is that the phase space is too complex to de-convolute 
into a useful "algebra. " That would be unfortunate. If that is the case, we can fall back on using 
statistics of the dynamics and build statistical models instead of group- theory models. Our 
approach is to build actual hardware systems, collect a statistical amount of input/output data 
representative of the overall dynamics, and use group theory (first choice) to develop an "algebra 
of design ” to allow us to compute new architectures for specific tasks. 

16 



4.2 Deliverables and Results Produced in Phase 1&2 (Y1&2) 

4.2.1 Task 1: Biologically inspired efficient learning algorithms (STOP) 
The main goal of the task was to develop local learning rules to significantly improve the efficiency 
of learning in AI models using global learning rules. Develop and evaluate biologically inspired 
spike-time dependent plasticity (STOP) learning rules, which can be incorporated as learning 
algorithms in large-scale spiking neural networks. Implement the developed STOP rule in spiking 
neural networks inferred from brains networks, determined based on the massive data available 
from the brain connectome project. Expected advantages include drastically improved learning 
speed and the ability to provide robust learning based on small number of examples manifested in 
brains. 

4.2.1.1 Deliverables in Task 1 (Phase 1) 
1. Compare existing STOP methods and determine winner STOP to he used in future algorithms. 
2. Suggest possible improvements on the selected STOP learning. 
3. Extract biologically realistic spiking NN from open source brain imaging data and extend 

detailed connectivity matrix to include around up to thousand regions. 
Completion criteria and performance metrics: Candidate STOP methods are implemented and 
compared using MNIST/CIFAR datasets. Comparison is based on performance metrics: correct 
classification rate, learning speed, computational cost and complexity. A winner STOP is selected 
based on the specified performance criteria. In addition, we develop a large-scale neural network 
extracted from brain imaging data. 

4.2.1.2 Delivered outcomes in Task 1 (Phase 1), eorresponding to the previously specified list 
of deliverables. 

i rules. .Wc. selected 
of the rule, where we only keep track of a "trace”, or a 

memory, of the most recent spike [temporal nearest neighbor), which has arrived at post- and 
presynaptic neurons. This is fast algorithm and produces comparable accuracy as other STOP 
rules. We re-implemented the spiking neural network (SNN) model from ETH (Diehl & Cook, 
2015) Diehl, P. & Cook. M (2015). Unsupervised learning of digit recognition using spike¬ 
timing-dependent plasticity. Frontiers in Comp. Neurosci, 9. doi: 10.3389/fncom. 2015.00099. 

2. We proposed several modifications to the spiking neuron-learning rules and spiking neural 
network (SNN) architecture, (i) A key result is that using a simplified leaky integrate-and-fire 
(LIF) spiking neuron model, we get similar accuracy as the more detailed ETH model with 
synaptic dynamics, and we can achieve that with significantly reduced computational efforts, 
(ii) We also modified the SNN architecture by implementing a layer of convolution “features ” 
or “patches. ” This layer follows a convolutional neural network approach. We use convolution 
windows of size k x k, with a stride of size s. Our results show that for large k we obtain 
improved performance over the original ETH network. As k decreases, the performance of C- 
SNN degrades as expected, due to the fragmentation of the image in the various convolution 
patches, (iii) We modified our C-SNN model by including Lattice Connectivity between pairs 
of neighboring convolutional patches (CLC-SNN). The weights connectivity pairs of 
convolutional patches are learned via the same STDP rule, which is used to learn the weights 
from input to the patches. Our convolutional spiking neural network models with lateral patch 
connectivity show great potential because of their ability to scale to large problem instances 
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with modest increase in computational demand and memory use. (iv) We implemented a 
topological learning rule according to which nearby nodes are more sensitive to similar input 
patterns. As a result, we obtained an ordered map of feature detector neurons, to be used for 
improved accuracy as an intermediate layer in a classilier CNN. 

3. We conducted detailed performance evaluation of the adopted STOP methods and SNN 
architectures. We did not conduct "biologically realistic spiking NN from open source brain 
imaging data, " contrary to what was planned originally. Instead, we used layered architectures, 
following the ETH literature and other resources. This was a more conservative approach, as 
this way we studied the consequences of the changes due to the introduced patch connectivity 
and topological mapping and had control over the effects in the performance. It is feasible that 
at later stage of the project we may conduct data mining of brain imaging data for SNN 
structures, however, at this stage we felt that using more regular structures helped to pinpoint 
the main connection between the SNN structure and classification performance. To test the 
performance of the SNN, we experimented extensively with the MNIST digit recognition 
database. 1 his is widely used to evaluate classifier approaches. We have also experimented by 
CIFAR10 based on related projects. We compared the performance of various SNNs using 
metrics, such as correct classification rate, learning speed, and computational cost. These 
results are documented in detail and indicate the, edge of the STDP learning in concerning 
memory use and learning-speed., with reasonable compromise on the accuracy decrease Hue to 
the imsupervised nature of the methods. Future work will be aimed at using unsupervised and 
supervised/reinforced methods to leverage their advantages in a combined learning approach. 

4.2,1.3 Deliverables in Task 1 during Y2: 
1. Operational CAN unit demonstrating the desired frequency modulation characteristics and 

changing synchronization in CAN due to energy availability/constraint. 
2. Implemented an array of CAN units (100) with STDP rule on the connections between units. 
3. Identified at least one task to be implemented in details, e g., rapid response to emergency 

scenarios, graceful degradation, which is unsolvable by traditional tools. For this task, 
demonstrate classification by the CAN array and show the impact of energy constraint on 
performance. 

Completion Criteria/Metrics: The synchronization and frequency modulation properties of the 
CAN module (with up to 10,000 units) are thoroughly tested and demonstrate coexistence of 
multiple frequencies (gamma carrier frequency 40-601Iz, and alpha gating frequency 6-10Hz). 
For a given level of energy supply, we must produce transitions between highly synchronous 
oscillations (resonances) and desynchronization effects by changing the coupling coefficient from 
the computational units (neurons) to the metabolic components (astrocytes) acting as a control 
parameter. Operational arrays of interacting CAN units, starling with a 10x10 array modeling a 
mesoscopic cortical region (of area up to lcnT'2). Implemented learning rules (STDP) between 
the array units and train the system to perform a classification task. We explore specific task 
domains, in which the novel energy-modulated CAN units provide solutions to problems 
unsolvable by existing methods. 

4.2.1.4 Snjmmary_of the delivered._niitCQnies in Task 1 (Phase 2), corresponding to the 
previousl^Lspccifietl list of deliverables. 
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1. Developed CAN array for oscillatory sequential memory, which is a coupled square lattice of 
5x5 CAN units, each with 1,000 neurons. This leads to a network of 25,000 neurons, which is 
somewhat less than the target 10x10 array, but it is in line with the target deliverable. 

2. We were successful in producing collective behaviors such as synchronous spiking activity 
and coordinated firing activity in the gamma oscillatory band (40-60 Hz), We modulated the 
collective oscillations based on the connection strength between oscillators. 

3. Implemented a correlation-based Hebbian learning rule over the CAN array. The microscopic 
connections inside each CAN unit (1.000 neurons) were not changed during the learning. In 
addition to the microscopic STOP learning, we implemented Hebbian learning over the 
macroscopic connections between the CAN units, producing a mean-filed effect. The 
implemented hierarchy of microscopic-macroscopic neural populations facilitates effective 
scaling using the Hebbian learning, as motivated by principles of brain dynamics. 

4. In the effort to construct artificially intelligent devices that can perform perceptual, motor, and 
cognitive tasks similar to those of humans and non-human mammals, one important measure 
of the efficiency of those AI designs is how their power consumption compares to that of the 
biological brain. In order to assess that efficiency, it is first necessary to form and outline a 
standard metric to compare the two. We evaluated suitable metrics to quantify energy 
efficiency in brains and computational models. 

5. We described a metric based on spiking activity to identify the computational capacity of 
several representative mammalian brains as well as the energy cost in various neuromorphic 
computer hardware. We confirmed that the mammalian cortex the power consumption per 
neuron is roughly conserved across species, roughly 0.5 to 1 * 10A-9 W/neuron. In this metrics, 
present CPUs provide about 10 million times worse performance than mammalian brains. The 
metric improves with GPUs and FPGAs, ARMs. Still, the best available neuromorphic chip at 
present, TrueNorth lags cortical neurons by about 3 orders of magnitude. 

6. The identified highly efficient energy utilization of biological spiking neurons, together with 
the sequential oscillating memory feature of CAN arrays, has the potential of alleviating the 
exponentially increasing computational demand of today's digital memories and mainstream 
AI solutions. Advanced GPU’s used for AlphaGo require power in the order of several MW. 
With this trajectory, we will run out of computational and energy resources within a decade. 

7. CAN array-based encoding in oscillatory sequential patterns can lead to drastic increase in 
memory (potentially exponential memory capacity). Thus, our approach with dynamic 
memory can provide solution to acute energy constraints reflected in Moore law and Landauer 
limit. 
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4.2.2 Task 2: Modeling Brain Networks Architectures using Graph Theory Tools 

The goal was to resolve the design bottleneck of the state-of-art of deep hierarchical neural 
networks by learning from the layered architecture in human brain during performing cognitive 
functions. Hierarchical deep neural networks are very popular and successful in many application 
areas. However, there are a number of unresolved questions why these networks are successful. In 
particular, it is not clear how knowledge is represented in deep layers and how the abstraction level 
changes from low abstraction at data level to high abstraction at decision/output layers. 
Understanding the way information is transformed and represented across layers, how features and 
produced and utilized in intermediate layers, will help to design more optimal networks for specific 
tasks. 

4.2.2.1 Deliverables of Task 2 in Phase 1 
/. Extend the compression/granulation from the 188 regions used earlier to around 1,000 and 

extract multi-layer deep neural networks from the data. Report on the evolution of the 
abstraction level across the hierarchy. 

2. Develop a model of brains processing sensory data (input) through many intermediate layers, 
to high-level symbolic knowledge and robust decisions. 

3. Study the nature of the abstraction gradient; identify possible sudden changes in the 
abstraction gradient with potential functional/behavioral significance in the corresponding 
brain regions. 

Completion cnieria and.performance metrics: Completed analysis of fMRl data with high spatial 
resolution up to 1000 units. Documented changes in the brain networks by evaluating network 
properties, such as number of hops, hub structure, and clustering of nodes to rich 
club/peripheral/feeder types. Algorithm developed to trace changes in abstraction gradient. 
Quantify the emerging symbolic abstraction level from sensory layer to deep layers. 

outcomes in Task 2 (Phase 

1. To study various layered neural network structures, we started with (1) the all-to-all connected 
Hopfield network layer, using Hebbian learning. Next, we considered more complex and 
biologically plausible structures, as the (2) combination of regular lattice layers and additional 
edges connecting remote nodes on the lattice, in order to model the spiking process of neural 
populations, we designed a (3) model of multi-layer structures with excitatory and inhibitory 
(reset) layers. Typical model is with 10,000 excitatory units (100x100 lattice), while inhibitory 
layers have 2,500 (50x50) nodes. We studied the propagation of initial activation over the 
lattice using the mathematical tools of percolation theory. Various dynamical regimes are 
documented in these networks, such as convergence to zero (all activations die out), 
convergence to unity (all sites become active), convergence to non-zero mean activity level 
(part of the sites are in non-zero steady-state), limit cycle oscillation (with specific period 
length), and quasi-periodic oscillations (no period detected in the given observation window, 
typically 10,000 time steps). The current implementation of bootstrap percolation is done in 
python and was designed to offer as much flexibility as possible so as to allow for the 
implementation of a wide range of possible models. We also designed this so that we can 
painlessly incorporate different lattice structures and varied connections between inhibitory 
and excitatory vertices as needed. 
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2. The obtained results serve as theoretical basis of’our new superior AI approach using pattern- 
based computing. We provided theoretical proof of the existence of a range of initialization 
probabilities that allow sustained oscillations with limit cycle or chaotic behavior as the 
function of reset level (m) and the type of update rule (k). We showed that the oscillations have 
a property of memory-less behavior for most parameter values, with the exception of larger 
reset values (m). We described the emergence of metastable spatial activity patters, which are 
sustained for several 100s or more time steps, they evolve slowly, and ultimately dissolve to 
random background activity. Crucially, these metastable patterns emerge spontaneously and 
predictably, and clearly distinct from the fluctuating background. In the context of the dynamic 
computing principles of our project, these metastable patterns are the candidates of 
intermittent ‘symbols, ’ that are the basis of the computation in our dynamical memory device. 
These results provide key insights into dynamical memory properties of the model, when input 
patterns can be encoded into attractors with limit cycles of specific length. We studied how to 
store and recall specific inputs in the attractors with multiple wings. The breakthrough aspects 
of these results for A1 rest in the exponential memory capacity attractors with very long cycles 
(chaos), and the instant recall of the stored patterns without the need for lengthy search and 
related convergence process required in more traditional, convergence-based (fixed point) 
memory devices. 

3. We developed a tool to assess knowledge representation in deep networks by progressing from 
the output towards the input. The basic idea is that we use the activation at intermediate 
convolutional layers to classify the input data generating the given activation. Clearly, no 
classification occurs based on the raw; input (zero abstraction level), while good classification 
(high level of abstraction) is possible based on the output activations, when the learning process 
converged. The important quest is how the abstraction level evolves across the layers? We 
implemented the extracted deep NNs in computational models and test how the different 
architectures influence the network performance in solving specific tasks. Using the CIFAR10 
image dataset, the classification accuracy is evaluated. Our observations show: (1) There is a 
tendency of overall increase of the abstraction in the DL layers when moving deeper in the 
network from Input towards the Output Layer. (2) The general tendency of incremental change 
in the classification, however, has been interrupted by several jumps in the layer-by-layer 
classification accuracy. This conclusion is especially important when analyzing brain-imaging 
data (Taylor et a!. 2015) displaying such layer-by-layer feature evolution. Taylor, P.. J.N. 
Hobbs, J. Burroni. H.T. Siegelmann, “The global landscape of cognition: hierarchical 
aggregation as an organizational principle of human cortical networks and functions, 
Scientific Reports (Nature Pubi). 5:1 HI 12, DOT H). 1038/srepIHI 12, 2015. 

4.2.2.3 Deliverables in Task 2, during V2 
J. Complete implementation of reinforcement learning with STOP (ER-STDP) in spiking neural 

network. 
2. Integrate ER-STDP with arrays of CAN units. Test the performance of the integrated system 

using MNIST and CJFAR datasets. Comparison is based on performance metrics: learning 
speed, classification rate, memory requirement, and computational cost. 

3. Research paper summarizing the new concepts and tested results of a “teachable ” brain-like 
AI. 

Completion criteria and metrics: Complete an operating program and model of ER-STDP. 
Integrate STDP, RL-STDP over networks of energy-aware CAN units. Test the performance of the 
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new model as compared to other unsupervised learning approaches, as well as to current spiking 
neural network control systems, particularly in regard to transfer learning and prediction. 

4,2^1..Summary of the delivered outcmm^ia Task 2 (Phase 2), corresponding fn the 
preYlously specified list nf deliverables. 
t. We developed a topological spiking neural network (SNN) with STOP learning rule. We 

showed that it significantly outperforms the state-of-art ETH approach, in terms employed 
learning patterns required to achieve a given accuracy. This is closely linked to online learning. 
In these results an n-gram-based evaluation approach has been very useful. The SNNs with the 
n-gram classification scheme can achieve a given performance level with 4-5 times less nodes 
and learning examples. 

2. We implemented a conversion from BRIAN software to BindsNET, our Python-based library, 
in order to provide a software platform that allows scaling up our SNN model with CAN arrays 
in completing various machine learning tasks. BindsNET provides a unified framework to 
construct hierarchical computing solutions using energy aware computing and dynamic 
memory principles, building on core spiking NN computing units, which are connected 
according a specific network architecture and trained using unsupervised, reinforcement, and 
supervised learning. 

3. The BindsNET repository' has been released as an open source at GitHub. In addition to the 
source code, we made it easy to install using pip package manager and it been installed by 
about 1,000 users. We also have some discussions with users and requests for future features. 

4. We tested the accuracy of BindsNET versus our BRIAN implementation of the ETH 
classification model. We showed that that BindsNET achieves the same performance as the 
ETH under BRIAN framework, in spite of significant simplifications in the simulation of the 
network components. The benefits using the simpler model is that we can achieve the same 
performance with LIE model that is notably less complex compare to the BRIAN model, and 
with simpler synapse rather the complex synapse used by BRIAN. 

5. Beyond standard image recognition tasks, we developed pipelines in BindsNET to address 
dynamically changing environments and reinforcement learning in computer gaming, such as 
AI Gym Space Invaders and ATARI. We implemented various versions of reinforcement 
learning. For that end we use the Atari “break-out” game to train spiking neuronal network. 
We choose two approaches: (1) training spiking neuronal network using deep Q learning; (2) 
training regular network with deep Q learning algorithm, then using the trained network by 
replacing its regular neurons with spiking neurons. By choosing these two approaches, we 
show that spiking neurons can be used in reinforcement learning paradigm. The challenge is 
therefore to train the network with spiking neuronal network to achieve weights that provide 
good performance. 

6. We currently extend BindsNET by new features, including convolutional networks, pattern 
matching, reinforcement learning, Q learning, and Deep Learning in multilayer architectures. 
We plan to use it for anomaly detection for prediction in time series, including Numenta 
benchmarks. We identify anomalies by showing that the BindsNET prediction significantly 
deviates from the observed input data stream. 
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4.2.3 Task 3: Brain energy utilization study for improved AI 

The goal is to develop models of energy metabolism in brains during cognition, which is a 
requirement to achieve superior Al, at the same time leads to superior energy efficiency in 
hardware applications. Note that in Y1 we concentrated efforts on Task 3.1 (Energy mechanism 
and utilization at micro-meso-macro levels), while we did not work on Task 3.2 (Brain energy 
studies based on gene expression data), to better focus on our project. We have achieved the 
deliverables in Task 3.1 as detailed below, thus successfully complete the goals of Task 3. 

4.2.3.1 Deliverables in Task 3 (Phase 1) 
Task 3.1: Energy mechanism and utilization at micro-meso-macro levels 
1. Develop metabolism models that include cellular mechanisms of neuron-glia, 
2. Incorporate the cellular models into a network of integrate and fire spiking neurons with 

excitatory-inhibitory (E-l) populations. 
3. Include a connectivity pattern of neurons based on available brain connectome data. 

Completion criteria and performance metrics: Multi-scale model is developed for neuron-glia 
cellular units with energy metabolism, which form a network of spiking neurons motivated by 
brain structures. The operation of the integrated model is tested and its performance is 
evaluated using entropy, pragmatic information, and free energy metrics. 

Task 3.2: Brain energy studies based on gene expression data 
1. As with the other tasks, we are recruiting students. Realistically, at the end of the first year we 

should have the data sources collected, the software written for analyzing them, and because 
of the complexity of the analysis involved we should be the preliminary data analysis using the 
iris data set. 

2. We should also have outlined a neural architecture and started computational experiments to 
address energy related issues (e.g, stochastic resonance). 

Completion criteria and performance metrics: Our energy-efficient neural network will be 
compared with a feedforward network on the iris dataset. 
Note: To better focus the resources of our project, we concentrated efforts on Task 3.1, while we 
did not work on Task 3.2 in the reporting period. Therefore, no results are reported on Task 3.2. 

4.2J.2 Summary of the delivered outcomes in Task 3(3.1) in Phase 1 corresponding to the 
previously specified list of deliverables. 

/, We have developed a prototype model to simulate the neuroenergetics of glia-neuron 
assemblages in the mammalian brain. The core model contains five differential equations, 
which simulate the behavior of these assemblages at three hierarchical scales. The innermost 
component is that of the individual spiking neuron (computing component), which operates on 
a millisecond time scale (0.001s). The mid-level component is our modeling of the glial 
processes operating on a 100 milliseconds time scale (0.1s). The most global component of 
the hierarchy is that of the fluctuations of the cerebral blood flow to provide nutrient exchange 
to the glia-neuron assemblages, operating at the rale of roughly 0.1 Hz (I Os), which is in line 
with cerebral blood How fluctuation periods identified in blood oxygen-level dependent 
(BOLD) signals that inform the clinical fMR], Timing is everything in this complex 
orchestration of exchange and recycling, and we have found that a model using the mentioned 
three times scales is able to describe the metabolic process effectively. 

2. We have produced crucial progress in the energy-constrained spiking neural network model 
with 1000 neuron units. Our approach demonstrates that the amount of available energy’ 
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modulates the oscillation frequency of interacting computational units (spiking neurons); more 
energy inflow (via vascular input) produces increased frequency of oscillations (spiking). 
Moreover, for a given level of energy supply, we can produce transitions between highly 
synchronous oscillations (resonances) and desynchronization effects by changing the coupling 
coefficient from the computational units (neurons) to the metabolic components (astrocytes) 
acting us a control parameter, fhe demonstrated synchronization control algorithm is a crucial 
advantage of our approach, as synchronization-desynchronization transitions allow rapid 
response to dynamically changing external conditions in the environment and thus they 
manifest critical components of and emergency response system. We have developed an 
interactive GUI interface whereby the model parameters can be changed much more 
conveniently, and the results witnessed in real time; see Figure 1. 

3. Going beyond the single oscillatory CAN units, we coupled together CAN oscillators using 
2D lattice architecture. I his 2D lattice will serve as a basis off he memory unit of the dynamic 
associative memory device. For the component CAN units, we used parameters maintaining 
oscillations of energy variables in a stable range, at the same time producing quantifiable 
variation in the oscillatory frequency (computational capability) as the function of available 
energy resources. We developed the blueprint of coupled CAN oscillator arrays, for the time 
being a 3x3 array. The input data are encoded in the spatially distributed oscillations in these 
arrays coupled with modifiable links (synapses). In future studies, the connections between the 
oscillators are adapted following the STDP learning rule developed in Task 1 (Learning). The 
suitable architecture of larger arrays with lattice links and some shortcuts (between non-local 
lattice points) will be based on the results in Task 2 (Architecture). 

4^2Ji.3 Deliverables in Task .3, Y2: 
1. Implementation of new architectures for spiking neural networks with CAN units. 
2. A code combining the CAN network architecture with STDP learning, to solve classification 

tasks. 
3. Demonstration of the modulatory role of energy constraints on performance. 
Compleiion..cntcnai. Successful implementation of the recurrent network in combination with 
learning algorithms, such as STDP and use them for categorization tasks in temporal and spatial 
domains. 

42.3.4 Summary of the„delivered outcomes in Task 3 (Phase 2), corresponding tn the 
previously specified list of deliverables. 

• We have introduced a lattice-based neural network with discrete time and space dynamics; the 
corresponding square-lattice topology supports CAN array architectures. The network consists 
of excitatory and inhibitory neurons and it is able to exhibit oscillatory dynamics. Various 
parametrizations influence the nature of the oscillators, producing phase transitions from fixed 
point, limit cycle, and non-periodic dynamics. 

• We identified several model parameters which can control the oscillatory dynamics and that 
the oscillations are robust to input perturbations. Our model has advantages in digital computer 
implementations, as the discrete nature of the iterative dynamics makes it less susceptible to 
numerical errors while unfolding its dynamics. 

• We studied various dynamic regimes in the spiking neural network architecture. An important 
achievement has been the analysis of the modulatory effect of input patterns introduce on 
dynamics of the quasi-chaotic oscillatory regime with very long oscillatory cycles. We 
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concluded that the inputs produced frequency modulation in the dynamics and visualized these 
effects using suitable graphics. 

• We formalized the description of activity/inactivity clusters, which provide the mathematical 
tool of the effects that input stimuli have on the network. We conducted simulations with 
variable stimuli to see their effect on the network dynamics. 

• Our results did not include explicit implementation of a specific learning rule but combined 
with learning rules developed in other tasks (Task 2), the outcomes have the potential of 
drastically increased memory capacity ot CAN arrays as associative memories employed in 
specific machine-learning tasks. 

Figure 1. Snapshot of the CAN mode! GUI. We have developed an interactive GUI interface 
whereby the model parameters can be changed much more conveniently, and the results are 
displayed in real time. 
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4.2.4 Task 4: Periodic and Quasiperiodic Analog Hardware for Neural Computation 

Objective is to build a new type of analog computational system that uses less energy. The system 
is modeled after the brain and not simply a layer-after-layer architecture. The basic computational 
elements in this new architecture are multi-state and quasiperiodic oscillators. In a real brain the 
oscillatory elements are assembled into complex networks. This suggests two approaches to our 
research; (1) Construction and investigation of analog multi-state and quasiperiodic oscillator 
hardware with the ultimate goal of collecting state diagrams so a compiler can be written to exploit 
this hardware. These circuits can be built from analog components and run at lower power; (2) 
Assemble software simulations comprised of power-law distribution of nodes and edges into 
computational systems for demonstration of conventional and novel applications. We will compare 
the ability of our oscillator circuits to store memory states with similar size Hopfield networks. 
That is, we will measure the number of stable oscillatory states as a function of the number of 
“neurons” and compare this with the number of fixed-point states in Hopfield networks for same 
numbers of “neurons.” 

4.2.4.1 Deliverables of Task 4 in Phasc 1 
1. Simulations: At end oj Phase 1, we should have made significant progress toward simulation 

of a robot in an artificial environment with real physics. The "brain ” will be a simulation of a 
network of oscillatory circuits. 

2. Hardware: At end of Phase I, we should have circuits constructed and data collected on 
oscillator circuits ranging in size from 4 to 24 nodes, and some (4-16 nodes) of the individual 
oscillator circuit attractor diagrams completed. 

3. Algebra of Design: Preliminary group theory analysis on the 4- to 16-node oscillator circuits 
will be completed. This preliminary work is required for compiler design. 

4.2.4.2 Suinjnary of the delivered outcomes in Task 4 (Phase 1), corresponding tn the 

T Ike developed Quasi-Periodic Oscillator Neural Network's (OPONN) to be used as 
computational engines. Quasiperiodic oscillators form the basis of autonomic nervous systems 
in many animals. QPONN control processes dependent on adaptive behavior, such as walking 
and running. QPONNs achieve a large repertoire of interrelated, dynamic behaviors that are 
readily interchangeable for rapid adaptation in unfamiliar situations. However, they avoid the 
computationally intensive nature of maintaining a model ofthe world. And, they do not attempt 
to enumerate the intractable size of anticipating all possible scenarios. QPOs are ideal for 
encoding adaptive behaviors, which are responsive and can be complex. Furthermore, QPOs 
are utilized across the autonomic nervous system amongst animals in vastly diverse biomes. 
They generalize to different problem domains and through further evolutionary computation 
may become more specialized. 

2. Robotic application domain of QPONN. Robots depend on adaptive behaviors for processes 
such as walking, flying, and swimming. And, they are subject to constraints on their design 
space, limiting their time and space complexity. The incorporation of QPOs is motivated by 
the hypothesis that the benefits observed in biology may confer analogous improvements in 
the adaptive behavior of robotic systems. QPOs will enable robots to have complex responses 
to unfamiliar situations without intensive computations or bulky storage requirements. To that 
end, we construct QPOs to form the basis of artificial autonomic nervous systems in robots. 
We worked on developing multiple environments that have varying subgoals and require 
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cumulative learning to traverse. The environments are: (1) mazes in a 2D environment. These 
are mostly simple environments that require much less computational power for quick iterative 
testing of the QPONNs during development; (2) mazes in a 3D environment that include 
pushing objects to create paths and avoiding moving obstacles. 

3. Designed a chip for neuromorphic computing. Quasi Periodic Oscillatory Neural Network 
(QPONN) is being designed, (i) Simulated the targeted applications in software to define the 
specifications of the QPONN. (ii) Based on simulation results, we have defined the 
requirements for the ASIC chip, (iii) The system perspective of how to drive the inputs to and 
from the chip have also been finalized, (iv) After exploring various design alternatives, the 
specifications of ASIC chip were decided, keeping in mind minimum area and power, (v) The 
design libraries for fabrication have been procured from MOSIS, (vi) The RTL design of the 
chip is in progress. Continuing the work on design libraries for chip have been procured from 
MOSIS. The memory compilers were obtained from ARM. The chip is scheduled for 
manufacturing in September and should be ready for evaluation early in '18. 

4. To facilitate experiments, we have built a 16-neuron system with patch panel for quick rewiring 
and circuit evaluation with a multichannel digital signal analyzer; see photo in full report at 
the end of this document. Though this seems like a small system, it is important to remember 
that a ring of 16 neurons, of the type we have been experimenting with, is able to support 143 
stable memory states. In previous reports we showed an exponential curve of the number of 
states vs. the number of neurons. 

5. NeuroComputingHardware Lah; This new lab has begun being setup since January 2017. The 
components that have come in include: (1 j 2 Digital Oscilloscopes, (2) 3 Function Generators, 
(3) 3 Power supplies, (4) Toolkits, (5) Logic Analyzer, (6) Chips, (7) Arduino Uno, (8) Flux 
Pens, (9) Shelves for circuit components, (10) Tables and chairs. We got a laptop computer 
from the department (Windows 7, 8 GB. Intel i5, 64bit), which has been used to interface with 
the oscilloscopes. We installed Python and Java IDEs on the machine for our computational 
experiments. 

6. In the field of algebra of design, we have found that group theory is well suited to describe 
oscillatory dynamics; we expect to extend it from a description of individual oscillators to 
coupled oscillators. An example of the four stable states for a 6-neuron machine described in 
in the full report. We are working on extending this to larger rings and coupled rings. We 
anticipate that the theory will also be applicable to describe sensor signal inputs to stable 
oscillatory state and describe the resulting dynamical changes. 

4^2.4.3 Deliverables of Task 4 in Pbase 2 
1. Electrical schematics for the neuromorphic hardware. 
2. Detailed phase diagrams for frequency modulation and synchronization. 
3. Comparison of the results obtained with analog hardware versus digital simulations. 
Completion criteria: Experimental evaluation of the role of control parameters in the coupled 
model in producing synchronization-desynchronization phase transitions and frequency 
modulation effects due to energy constraints. 

4.2.4.4^Summary of the delivered outcomes in Task 4 (Phase 2), corresponding tn the 
previously,specified list of tleliverables. 
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During the performance period (Year 2, Phase 2), in response to the requests of the PM, there have 
been changes in the task goals. Accordingly, no analog hardware implementation of CAN circuitry 
has been completed. 
1. Efforts have been directed to the development of a neuromorphte chip, which is an ASIC chip 

designed to have multiple digitally coupled oscillators and to perform Hopfield network-based 
computation to perform pattern recognition. 

2. Worked on a generalized Hopfield NN model to describe energy dynamics, in which plasticity 
to be controlled by energy dynamics. Another model was also studied which uses the simple 
Schmitt trigger neuron model to create ring oscillators, which rings are chained together into a 
lattice network structure. 

3. Aiming at FPGA platform, we implemented a single Izhikevich neuron and two interacting 
neurons in Verilog. We also implemented the multiply and accumulate model for creating a 
network. Behavioral simulation was done with 2 neurons. In the future we will add the 
metabolic system with two equations to produce a very simple CAN model. 

4. We plan to scale up the design to a network of 48 CAN units with neurons and corresponding 
metabolics. We plan to synthesize design and put binary in ZedBoard and explore analog 
implementation. 

5. We implemented the neuron model proposed by Izhikevich. There are N copies of the module, 
which feeds current to N neurons. Each neuron has modules to perform the 2 equations of 
Izhikevich original neuron model. Fixed-point arithmetic has been utilized in the design. We 
implemented the Izhikevich neuron model in Verilog; behavioral simulation has been 
performed with 2 neurons. The Multiply and Accumulate module was also completed for 
creating a network. 

6. Not completed: scaling up the design to a network of 48 neurons and add capability for 2 new 
equations to neuron for the energy component. Synthesize design and put binary in ZedBoard. 
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4.3 Deliverables and Results Produced in Phase 3 (Y3) 

4.3.1 Task 1: Developing a prototy pe CAN array for energy aware computing 
Our goal is to develop energy efficient dynamical memories and compare their performance with 
mainstream DL AI approaches. Brains need merely 20W of power for solving even the most 
complicated tasks required from human intelligence. This efficiency is about a million times higher 
than today’s cutting-edge Deep Learning (DL) solutions developed to specif c Machine Learning 
(ML) benchmark tasks, requiring power supply with many MWs capacity, which is unsustainable 
in the foreseeable future. CAN arrays are motivated by the extremely energy efficiency of our 
brains. Neuromorphic hardware platforms (TrueNorth/IBM. Loihi/Intel, etc.) imitating spiking 
communication between biological brain cells (neurons), have much better energy efficiency than 
leading DL computing. CAN arrays provide highly innovative and efficient computational 
algorithms to drastically expand the impact of neuromorphic chips. 

4.3.1.1 Deliverables in Task 1 (Phase 3) 
Demonstrating the feasibility of computing by CAN oscillatory arrays as memory devices. 
1. Develop tuning methods using some control parameters inside the CAN units, as well as by 

adjusting the coupling parameters betM>een the CAN units (learning) to achieve sequential 
transitions between oscillating regimes. 
Repeated transitions between synchronous and non-synchronous operating regimes produce 
the sequential patterns as basic elements of CAN dynamical memories. 
Testing the feasibility of such encoding using simple test patters for classification task. 

Completion crileria: Demonstrated encoding and recall of input data using oscillatory CAN 
arrays. 

2. 

3. 

4.3.1.2 Summary of the delivered outcomes in Task 1 
previously specified list of deliverables. 
1. Implemented arrays of CAN units with modifiable connections between the units. We 

identified conditions in CAN arrays leading to the sequence of synchronization patterns. 
2. A breakthrough result has been achieved when analyzing the dynamics of CAN units by 

showing the presence of hysteresis effect due to cusp bifurcation in the coupled neural and 
metabolic system. Namely, we observed that the space defined by the forward gain from neural 
to metabolic subsystems, and the feedback gain from metabolic to neural system has a 
bifurcation point leading to the split of a stable equilibrium to two stable and one unstable 
equilibrium. The parameters corresponding to the bifurcated states create the conditions of 
self-sustained oscillations, which provide the basis and feasibility of CAN arrays serving as 
dynamical memories. 

3. Implemented Hebbian learning on a CAN array with 25,000 neuron components, which means 
a 5x5 array of CAN units, each with 1,000 neurons. In our architecture, input patterns directly 
project to the CAN columns. Based on biological motivation 40-60Hz band of oscillations 
have been used. We demonstrated the feasibility of CAN arrays as the memory devices. CAN 
arrays can be trained using Hebbian learning to store and recall input data using sequences of 
oscillatory patters. Simulation results show that the encoded information can be read out from 
these patterns, and it is statistically significant at level p=0.05, even 0.01, for properly tuned 
system. 

4. Evaluated the benefits of the groundbreaking results in literature on the effect is called ephapsis 
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(Chiang et al., 20!9)i. Accordingly, ephapsis denotes the influence of the firing rate of a neuron 
by the extracellular ionic loop currents of neighboring neurons, which on entering the neuron 
tend to hyperpolarize it and exiting tend to depolarize it. It has been shown experimentally that 
weak electric fields can entrain action potentials of neurons. Ephaptic coupling has been 
suggested as a mechanism involved in modulating neural activity from different regions of the 
nervous system. Our studies support that the generation of the slow periodic activity is within 
the dendritic areas. Further studies are needed to integrate these new results to our CAN model. 

4.3.2 Task 2: Building software implementations of dynamical memories to solve 
practically relevant AI/ML tasks 
This task focuses on the conversion of the project results with oscillatory neural memories to real 
life problems. As a unified software platform, we employ BindsNET environment developed at 
the previous phases of the project, BindsNET provides a framework to construct hierarchical 
computing solutions using energy aware computing and dynamic oscillatory memory principles, 
building on core spiking NN computing units, which are connected according a specific network 
architecture and trained using unsupervised, reinforcement, and supervised learning. 

1. Demonstrate the capability to scale up the preliminary results with BindsNET to practical, 
highly-compelitive ML tasks. In selecting suitable ML tasks, employ the previous 
implement at ions of the Atari computer game. 

2. Show that the proposed approach provides competitive results w.r.t. leading ML solutions, 
such as Q-learning. 

3. Demonstrate the effectiveness and robustness of the developed oscillatory neural network 
model, in comparison with other existing tools in the field. 

Completion criteria.and metrics:. Demonstrated feasibility of using spiking networks to competitive 
ML tasks. Evaluation metrics include gaming performance, robustness to random or non-random 
distortions in the input data and the decision making. 

of the delivered outcomes in Task 2 (Phase 3), corresponding to the 

1. The software environment BindsNET, which has been created earlier in this DARPA project, 
has been successfully released as open source software on github:. It has received many 
followers and it is a highly competitive software environment in the field of neuromorphic 
computing simulations. 

2. Implemented the interface with the Atari 2600 breakout ML task and established a framework 
to solve this game task using our spiking neural network. At this point, we test the performance 
of spiking neuron architectures on the game of Atari 2600 Breakout. 

3. Trained artificial neural networks with architecture corresponding to Deep Q-Learning 
algorithm and transferred the learned weights to the spiking neural network. Our key 
achievement shows that spiking neural networks are capable of outperforming top ML 

1 Chiang. C. C, Shivacharan, R. S.. Wei. X.. Gonzalez-Reyes. L E.. & Durand. D. M. (2019). Slow periodic 
activity in the longitudinal hippocampal slice can self-propagate non-synaptically by a mechanism consistent 
with ephaptic coupling. The Journal of physiology. .W( I). 249-269. 
2 https://github.com/BindsNET/bindsnet 
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approaches on Atari task achieved by Google and other leaders of the field. We are conducting 
extensive studies on various popular ML games to show the generalizability of our approach 
and achievement. The results achieved using our transfer learning approach, have the potential 
to be implemented on hardware platforms, such as neuromorphic chips. 

4. We demonstrated that (he robustness of the spiking neural network is significantly improved 
as compared to the widely used Deep Learning, even though part of the screen is occluded 
from the player. Our SNN produces better performance for occlusions, and it avoids the 
catastrophic drop in performance at some sensitive locations. We are preparing papers to report 
these breakthrough results at top conferences. 

5. An additional key point is thal our approach showed high robustness to perturbations, being 
natural (noise) or adversarial attack. This addresses a weak point of Deep Learning and our 
spiking method has a clear edge. It relates to adversarial AL and we are involved in research 
related to this topic. 

5. Closing Statement 

The DARPA Superior Artificial Intelligence Project has been performed at (he Biologically- 
Inspired Neural and Dynamical Systems (BINDS) Laboratory, University of Massachusetts - 
Amherst, College of Information and Computer Sciences (CICS). It has been the collective effort 
of a team of: 

• 3 faculty members and senior personnel. 
• 1 postdoc, 
• 18 graduate students, 
• 5 undergraduate students. 

The project produced the following outcomes: 

• 1 book volume. 
• 13 journal papers. 
• 14 conference proceedings, 
• 12 talks and presentations. 

The project achieved its stated goals, within the constraints of the reduced 3-year span with 3 tasks, 
instead of the originally planned 4-project with 4 main tasks. 
At this time further support is actively solicited to complete the efforts which remained unfinished 
due to the early termination of the project. 
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