

 Solvent acts as bulk medium affecting solute properties

- System includes actual solvent molecules
- Required for any direct solvent-solute interaction
- - System becomes quite large if long-range effects are to be handled well
 - Sampling of solvent configurations required
 - Simulation times increase
- Implicit
 - System does not include actual solvent molecules

Explicit Water Models

- Simple Pairwise Potentials
 - Interaction sites defined on atoms, atoms and lone pairs, or atoms and bisector of HOH angle

- · VDW interactions may be simplified to one per pair of water molecules
- Individual molecule dipole moments (~2.25D) approximate liquid water (2.6D) rather than gas phase (1.85D)
- Polarizable

CHEM8711/7711

Implicit Solvent Models

- Dielectric Screening
- Continuum Representations
 - Attempt to represent three contributions to solvation free energy:

$$\Delta G_{sol} = \Delta G_{elec} + \Delta G_{vdw} + \Delta G_{cav}$$

- Widely used methods addressing ΔG_{elec}:
 - Born model (we will discuss generalized Born model, which also addresses ΔG_{vdw} and $\Delta G_{\text{cav}})$
 - Poisson-Boltzmann

CHEM8711/7711

1

Dielectric Screening

- Polar solvents screen (reduce) electrostatic interactions
- Electrostatic function: $V = \frac{q_1 q_2}{Dr}$
- Common solvent dielectric constants:
 - gas phase: 1water: 78.3alkanes: 3
 - aqueous/membrane interface: 10

CHEM8711/7711:

Limitation

- The influence of solvent includes an electrostatic and an entropic contribution
 - The electrostatic component is due to solvent polarization (and screening of charge interactions due to intervening solvent molecules)
 - Entropic contributions are due to formation of solvent cavities around solutes
 - The solvent dielectric only reflects the screening of charge interactions

CHEM8711/7711

Class Exercise

- Compute the conformational populations for either butane or 1,4-butanedione (coordinate with another student to make sure both are covered) with the solvent dielectric set to 1
- Recompute the conformational populations with the solvent dielectric set to 80

if you have a database of conformations, you can reset the dielectric using Window->Potential Control and then get energies for reminimized structures:

db_ComputeEnergy ['database.mdb','source field','destination field',1]

CHEM8711/7711:

Exercise Analysis

- Consider the following questions:
 - Are the lowest energy conformations the same with different solvent dielectrics?
 - If not, how do they differ (structurally)?

HFM8711/7711:

10

Generalized Born Method

 Solvation free energies can be expressed as a sum of a solvent cavity term, a solvent-solute van derWaals term and an electrostatic polarization term

$$G_{sol} = G_{cav} + G_{VDW} + G_{pol}$$

 The cavity and van derWaals terms are related to the solvent-accessible surface area

$$G_{cav} + G_{VDW} = ?\sigma_k SA_k$$
 solvent accessible surface area for parameter for atom type k

Electrostatic term form:

$$\Delta G_{elec} = -\frac{1}{2} \Biggl(1 - \frac{1}{e} \sum_{i=1}^{N} \sum_{j=1}^{N} \frac{q_i q_j}{f \bigl[r_{ij}, q_{ij} \bigr]} \\ \text{Interparticle distance} \quad \text{Bom radii} \\ \text{CHEM8711/7711:} \qquad 17$$

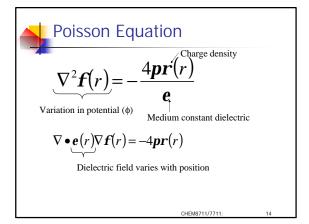
Implicit Solvation of Butane

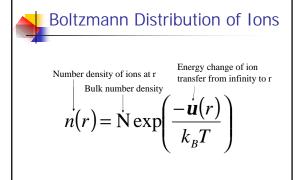
	ε=1	ε =80
Anti	23.4317	25.6143
	(99.98421%)	(99.98420%)
Gauche+	24.3669	26.5494
	(0.00789%)	(0.00790%)
Gauche-	24.3669	26.5494
	(0.00789%)	(0.00790%)

Changes in conformational distribution due to solvation of hydrophobic molecules are largely NOT electrostatic in nature

CHEM8711/7711

12

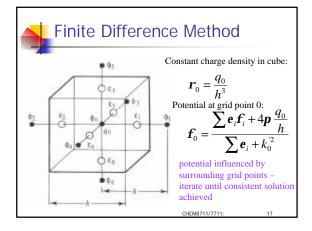

GB/SA Results for Butane

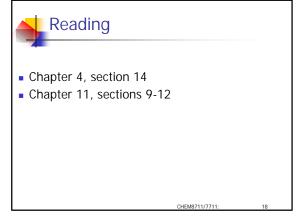

	No Solvent	GB/SA water
Anti	-5.076	-3.04947
	(99.92605%)	(99.88116%)
Gauche+	-4.29374	-2.31422
	(0.03697%)	(0.05942%)
Gauche-	-4.29374	-2.31422
	(0.03697%)	(0.05942%)

Inclusion of the cavity and van derWaals effects of solvation improves the calculated influence of solvent

CHEM8711/7711:

13





$$\nabla \bullet \mathbf{e}(r) \nabla \mathbf{f}(r) - \mathbf{k}' \mathbf{f}(r) = -4\mathbf{p}\mathbf{r}(r)$$
$$\mathbf{k}' = \frac{8\mathbf{p}N_A e^2 I}{1000k_B T}$$

Must be solved numerically

8711/7711

