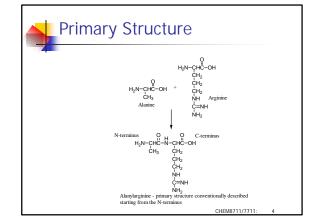


Examples of Protein Modeling

- Visualization
 - Examination of an experimental structure to gain insight about a research question
- Dynamics
 - To examine the dynamics of protein structures
 - To examine binding free energy differences of ligands
- Docking
 - To explore fit of a small molecule against a protein
- Computational Model Development
 - Protein structure prediction from sequence
 - Homology modeling

CHEM8711/7711:



Protein Structure Description

Protein Structure can be Described at Several Levels

- Primary
 - Linear sequence of amino acids in protein chain
- Secondary
 - Three-dimensional local conformation
- Tertiary
 - Overall fold of an entire protein chain
- Quaternary
 - Overall shape of a multi-chain protein

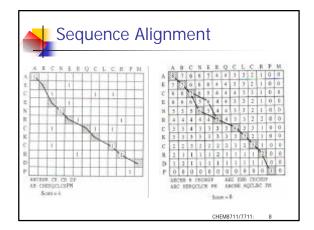
CHEM8711/7711: 3

Protein Sequence Sources

- GeneBank: <u>www.ncbi.nlm.nih.gov/Entrez/</u>
- Protein Databank: www.rcsb.org (not limited to primary structure)
- Swiss-Prot: www.expasy.ch/sprot/

CHEM0711/7711:

Importing Sequences to MOE


- Option I
 - Copy the sequence into a text file
 - Insert a line prior to the sequence that starts with
 , followed by a name for the sequence
 - Save the text file with a .fasta extension
- Option II
 - Display the file as fasta in the source database
 - Save with a .fasta extension
- Open the file in MOE, and view the sequence from the sequence editor

Class Exercise I

- Use one of the protein databases to locate several related protein sequences (ask for suggestions if you aren't currently interested in any proteins) – One guarantee of relation is to find proteins with the same name from different species
- Import them into MOE
- Make sure you know how to select residues (single residues, continuous stretches of residues, and scattered residues)

CHEM8711/7711:

Class Exercise II

- Align the sequences that you have imported into MOE
- From the sequence window choose Homology->Align
- Open the commands window to see the pairwise residue identities for your aligned sequences

CHEM8711/7711: 9

Protein Secondary Structure

- Examples
 - Alpha Helix
 - Beta sheet
 - Beta turn
- Major stabilizing contributions
 - Hydrogen bonding
 - Relief of steric crowding

CHEM8711/7711: 10

Useful MOE Tools

- Sequence Window
 - Display menu allows you to highlight actual secondary structures (red=helix, yellow=sheet)
 - Display menu allows you to highlight hydrogen bonding (generally only for the backbone)
- Main Window
 - Render->Draw menu allows you to show hydrogen bonds and protein ribbon diagram

CHEM8711/7711:

Notes on Experimental Structures

- Experimental protein structures are determined mainly by two methods:
 - NMR
 - Often by ¹H-¹H NOE enhancements
 - Structures are then modeled to be consistent with the distance data derived from the spectra
 - X-ray crystallography
 - X-ray diffraction patterns are dependent on electron density
 - Hydrogen atoms have negligible electron density and are not present in x-ray structures
 - The O and N of a terminal amide have similar electron density and are often placed on the basis of expected hydrogen bonding

Class Exercise III

- Download a protein structure from the Protein Databank and add hydrogens (Edit->Add Hydrogens)
- Isolate an alpha-helical secondary structure
 - Examine hydrogen-bonding in that region
 - Examine spacing of the amino acid sidechains
- Isolate a beta-sheet secondary structure (you will need non-contiguous parts of the sequence) and examine similarly

CHEM8711/7711: 13

Protein Tertiary Structure

- Covalent stabilization:
 - Disulfide bond formation
- Non-covalent stabilization:
 - Hydrophobic sequestration from water (entropy driven)
 - Salt bridge formation (enthalpy driven)
 - Hydrogen bonding (enthalpy driven)

CHEM8711/7711:

pH, pKa and Ionizability

Electrostatic (charge) interactions are an important feature of protein structure and activity - models cannot ignore ionizability and charge

- Ammonium pKa ~9, thus will remain cationic in water - this generalizes to amine groups in proteins
- Carboxylic acid pKa's ~5, thus will lose their protons in water - this generalizes to carboxylic acid groups in proteins
- Check out the section on amino acids in your text for other groups to be aware of

CHEM8711/7711: 15

Class Exercise IV

- Show all atoms of your protein as a spacefilling model
- Select all atoms that are part of hydrophobic residues
- Visually decide how well they are screened away from the solvent

IEM8711/7711: 16

Class Exercise V

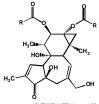
- Isolate all cysteine residues in your protein
- Are any involved in disulfide linkages?
- Isolate all cationic and anionic residues in your protein
- Are any near enough in space to be participating in salt bridges?

CHEM8711/7711:

Crystallographic Structures

- Crystallography does not identify hydrogen positions
 they must be added
- Ionization of standard residues will be handled automatically (groups with pKa's near 7, like histidine, should be manually checked)
- Residues may be unresolved (missing)
- No partial charges included, must be assigned
- Non-standard residues may be incorrectly assigned atom types
- Resolution and crystal packing effects contribute to the fact that the structures are NOT energy minimized in your forcefield!

Example: Missing Residues


- Download PDB entry 1f88
- Identify regions in both chains that are missing amino acids
 - Chain 1
 - residue 235 is not attached to residue 236
 - Chain 2
 - residue 142 is not attached to residue 143
 - Residue 221 is not attached to residue 222

CHEM8711/7711:

Example: Incorrect Atom Types

- Download PDB entry 1ptr
- Add hydrogens
- Isolate the ligand and draw its structure

Homology Modeling

Founding Assumption:

homologous primary structure AND

homologous function INDICATE

homologous tertiary structure

structures - 25% sequence homology CHEM8711/7711: 21

Homology Modeling Needs

- Alignment of:
 - Template sequence with known structure
 - Target sequence with known sequence
- Knowledge about the function of both proteins
 - Knowing residues critical for function allows examination of homology in those regions – should be higher than overall homology
 - Greater functional homology indicates likelihood that proteins have a common ancestor

CHEM8711/7711: 22

Homology Modeling Method

- For regions of identical length:
 - Protein target backbone is taken from template
 - Identical target sidechains are taken from template
 - Nonidentical target sidechains are derived from library
- For target sequence insertions (indels)
 - High resolution structures from PDB are scanned to find those that have regions that superpose on the anchor residues on either side

CHEM8711/7711:

Class Exercise VI

- Search the PDB for one of the proteins in your set from exercises I and II
- Use this protein as your template structure, and any of the other sequences as your target
 - (If you find two in the pdb, use one as the template and the other as the target -> you can compare your modeled structure with the experimental structure when you are done)
- Build a homology model (Homology ->Homology Model)

Evaluating Protein Models

- Final structures after minimization may have structural features inconsistent with known protein structural characteristics
 - Examples
 - Cis-amide bonds at locations other than proline
 - Incorrect stereochemistry at alpha or beta carbons
 - Strained bond angles
 - Dihedral angles that match unpopulated regions of a Ramachandran plot
 - Steric bumps
 - Evaluation tools accessible in the sequence window
 - Measure->Protein Report
 - Measure->Protein Contacts

CHEM8711/7711:

Class Exercise VII

- Evaluate your protein model and identify
 - Steric problems
 - Residues connected by cis-amide bonds
 - Dihedrals outside the expected ranges
 - Reversed stereochemistry at alpha carbons

CHEM8711/7711:

- - -

Reading

- First Edition
 - Section 8.13
- Second Edition
 - Section 9.10
 - Chapter 10