

Typical Functional Form

- Sum of energy terms
 - Bonded terms

•
$$V = k_s (r - r_0)^2$$

• E = k
$$(\theta - \theta_0)^2$$

•
$$E\omega = Vn (1 + s \cos n\omega)$$

Nonbonded terms

Nonborded terms
$$V_{VDW} = \mathbf{e} \left[\left(\frac{r_0}{r} \right)^{12} - 2 \left(\frac{r_0}{r} \right)^{6} \right] \qquad V = \frac{q_1 q_2}{Dr}$$

$$V = \frac{\mathbf{m}_i \mathbf{m}_j}{Dr_{ij}^3} \left(\cos x - 3 \cos \mathbf{a}_i \cos \mathbf{a}_j \right)$$
CHEMB711/7711: Parameter Development 2

Quiz

 Given the molecule below, describe the number and types of experimentally-derived parameters that would be needed to describe bonding interactions in a molecular mechanics calculation using a typical forcefield - DEFINE APPROPRIATE ATOM TYPES!

$$\begin{array}{ccc} & \text{OH} \\ \text{H}_2\text{C} & \text{H} \\ & \text{C=C} \\ \text{H} & \text{CH}_2 \end{array}$$

CHEM8711/7711:

Determine the Force Field Goal

- Force field parameterization involves fitting calculated values to reference values through optimization of parameters
- The nature of the reference data (geometric, energetic, spectroscopic, etc.) determines situations in which the force field will be successful

Collect the Reference Data - I

- Experimental (examples)
 - Geometries
 - Crystallography: Bond distances, angles, torsions
 - Microwave spectroscopy: Bond distances
 - NMR: Angles, torsions
 - Molecular volumes
 - Energies
 - NMR: Relative conformational differences
 - IR: Bond stretching frequencies (energies)
 - Heats of vaporization

CHEM8711/7711: Parameter Development

Experimental Bond Distances

- r_e: equilibrium bond distance bottom of energy well
- r_{av}: average distance (slightly longer than r_a)
- r_a: thermal average, from electron diffraction radial distribution function
- r_a: derived from r_a (~0.002 Å longer) averaged over all molecular vibrations
- r_α: distance between mean atom positions at a given T
- r_α°: r_α extrapolated to 0 K
- r_o: directly obtained from microwave
- r_s: directly obtained from microwave
- r₇: microwave result with vibrational correction (should agree with r_{α}°

CHEM8711/7711: Parameter Development

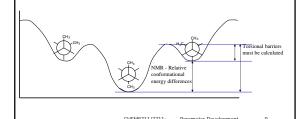
1

Experimental Bond Distances

- Electron Diffraction
 - Thermal average of occupied states
 - Gives r_a, r_q, r_α, r_α°
- Microwave
 - · Values for the state examined
 - Gives r_o, r_s, r_z
- Molecular Mechanics
 - Usually parameterized to give room-temperature vibrationally-averaged structures: \boldsymbol{r}_{α}
 - Comparable to x-ray or electron diffraction (usually)
 - NOT comparable to *Ab Initio* (which gives r_e)!

CHEM8711/7711: Parameter Development

Collect the Reference Data - II


- Ab initio
 - Equilibrium geometry from optimized structures
 - Force constants by single-point calculations on non-equilibrium structures
 - Atomic partial charges by fitting to the molecular electrostatic potential
 - Energies directly from the calculations

CHEM8711/7711: Parameter Development

A Note on Reference Data

- Torsional barriers:
 - Rarely available from experimental data

Parameterization

- Trial and Error
 - Challenging due to number of parameters to be simultaneously optimized
 - Also challenging due to incomplete separability of parameters
- Least squares fitting
- Genetic algorithm (Cundari Group parameterization of semi-empirical methods for transition metals)

CHEM8711/7711: Parameter Development

Expanding Forcefields

- Most common situation you need parameters for a functional group that isn't represented in the forcefield that suits the remainder of your system
- Your best guide in this case is to follow the procedure outlined in the initial publication of the forcefield

CHEM8711/7711: Parameter Development

Separability of Parameters

- 'Hard' parameters
 - Bond lengths, angles and torsions often come directly from experimental data
 - They are often the same (or nearly the same) from force field to force field
 - Changes in these parameters don't often influence the best choice of other parameters
- 'Soft' parameters
 - Non-bonded parameters (electrostatic & VDW)
 - Changes in one often requires changes in others

CHEM8711/7711: Parameter Development

12

Reading

- First Edition: Section 3.17Second Edition: Section 4.18
- READ the paper describing the development of whatever force field you are using for your project (and reference it in your written work)

CHEM8711/7711: Parameter Development

3