
Molecular Mechanics

Chem 8711/7711

Some Basic Theory - Energetics

Energies can be calculated at several levels of theory

- Ab Initio
 - · Most theoretically rigorous
 - Energies calculated from electronic structure
 - Requires no experimental parameters
- Semi-Empirical
 - Simplifying assumptions made
- Experimental parameters compensate
- Molecular Mechanics
 - Electrons essentially ignored
 - · Many experimental parameters required

Reasonable Simplification

- Born-Oppenheimer Approximation:
 - Movements of electrons are so rapid relative to movements of nuclei that they adapt essentially instantly to the nuclear positions - thus the motions of electrons and nuclei can be separated
 - Molecular (classical) mechanics relies on this approximation to the extreme of allowing electrons to be IMPLIED by their associated nuclei

Additional Approximations

- Potential energy can be represented by terms describing deformation from "standard" values
- Deformations from "standard" values can be represented harmonically
- Potential functions and parameters are transferable across molecules

Transferability

- Forcefields are generally parameterized to give accurate relative energies for isomeric structures
- Energy values will not be comparable from one forcefield to another

Exercise

- Build a simple molecule in MOE or Spartan (cyclohexane, an amino acid, a monosaccharide, etc)
- Compute and record its energy using every available forcefield
 - Forcefields can be changed in MOE using the Window->Potential Control dialog box
 - Forcefield control in Spartan is controlled during calculation setup
- What is the range of energies you noted?

Molecular Mechanics - Goals

• To reproduce molecular geometries and **RELATIVE** energies

• Bond lengths: + 0.005 Å • Bond angles: + 1° • Torsion angles: + 5° ΔH_f: <u>+</u> 0.7 kcal/mol

Molecular Mechanics

- · Energy broken down into terms
 - · Bond stretching

· Angle bending

- Torsional potential
- Non-bonded interactions • Van derWaals, electrostatic, dipolar interactions

Forcefields

- The combination of mathematical formulae and parameters used to represent the energy of a chemical
- · Different forcefields are optimized for different problems:
 - MMFF94: optimized for small organic compounds wide structural variety
 - Sybyl: general purpose reasonable (but not excellent) parameters for wide variety of atom environments
 - AMBER94: optimized for proteins often missing parameters for other organics
 - PEFSAC95: optimized for carbohydrates
 - UFF: universal forcefield, contains parameters even for metals

Question

- 1. Sketch the energy as a function of distance (r) between two bonded atoms (start @ r=0 Å)
- 2. If this interaction is expressed harmonically [V = $k_s (r - r_0)^2$ what will the curve look like?
- 3. Where will the greatest error be?
- 4. What chemical process(es) will therefore not be modeled accurately?

Bond Stretching · Approximated with a harmonic potential • $V = k_s (r - r_0)^2$ What value of ro is appropriate? harmonic potential Two parameters per pair of atom types Morse potential huge errors at relatively large interatomic distances

Interatomic distance

Experimental Bond Distances

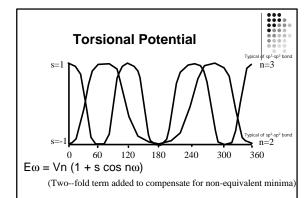
- ullet ${\bf r_e}$: equilibrium bond distance bottom of energy well
- r_{av}: average distance (slightly longer than r_e)
- r_a: thermal average, from electron diffraction radial distribution
- $\rm r_g$: derived from $\rm r_a$ (~0.002 Å longer) averaged over all molecular vibrations
- ${\rm r}_{\alpha}\!\!:\!\,$ distance between mean atom positions at a given T
- $\mathbf{r}_{\alpha}^{\circ}$: \mathbf{r}_{α} extrapolated to 0 K
- r_o: directly obtained from microwave
- r_s: directly obtained from microwave
- Γ_z: microwave result with vibrational correction (should agree with Γ_α°

Experimental Bond Distances

- · Electron Diffraction
 - · Thermal average of occupied states
 - \bullet Gives ${\rm r_a,\,r_g,\,r_\alpha,\,r_\alpha}^\circ$
- Microwave
 - · Values for the state examined
 - Gives r_o, r_s, r_z
- Molecular Mechanics
 - Usually parameterized to give room-temperature vibrationallyaveraged structures: r_{α}
 - Comparable to x-ray or electron diffraction (usually)
 - NOT identical to Ab Initio (which gives r_e)!

Angle Bending

$$\mathsf{E} = \mathsf{k} \; (\theta - \theta_0)^2$$


Displacement from equilibrium bond angle

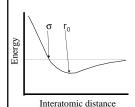
• Requires two parameters for each combination of three atom types

Question

- 1. Sketch the energy as a function of rotation around the central bond of butane
- Draw structures of minimum energy structures and transition structures

Three parameters needed for each combination of atom types

Question



- What value of n do you expect for an sp2-sp3 bond?
- Sketch the energy as a function of distance for non-bonded atoms

Van der Waals

• Usually expressed as a Lennard-Jones potential (6-12 shown):

$$V_{vDW} = 4e \left[\underbrace{\left(\frac{s}{r} \right)^{12}}_{repulsive} - \underbrace{\left(\frac{s}{r} \right)^{6}}_{attractive} \right]$$

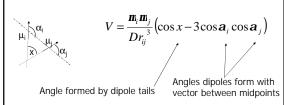
$$V_{VDW} = e \left[\left(\frac{r_0}{r} \right)^{12} - 2 \left(\frac{r_0}{r} \right)^{6} \right]$$

Ionic Interactions

- Generally approximated using partial point charges
- Point charges come from
 - Forcefield
 - · Quantum mechanics

$$V = \frac{q_1 q_2}{Dr}$$

Effective dielectric constant



Dipolar Interactions

Directional

• Often computed using Jeans' formula

Reading

- Required
 - Chapter 1 in Leach (will discuss questions only)
 - Chapter 3 in Leach
- Historical Interest
 - Molecular Mechanics, Burkert and Allinger, ACS Monograph, 1982