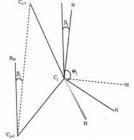


Greatest Challenge

- Setting up an appropriate starting system
 - Conformation of lipid chains
 - Surface area/lipid head group
 - Solvation

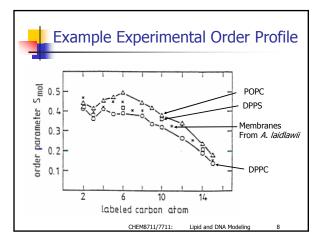
Acyl Chain Disorder


- Liquid crystalline phase lipids (most relevant for studying biological membranes) have increased mobility relative to gel phase lipids
- Increased mobility gives rise to 'gauche defects' which are found in increasing concentration toward the center of the bilayer
- The acyl chain disorder can be represented by statistically averaged molecular order parameters

CHEM8711/7711: Lipid and DNA Modeling

Molecular Order Parameters

• $S_i^{mol} = 0.5 < 3 \cos^2 \beta_i - 1 >$


CHEM8711/7711: Lipid and DNA Modeling

Experimental Order Parameters

- ²H NMR with deuterium labeled lipids
 - Series of measurements made on lipids with deuterium at different positions down the chain
 - Angle measured is between magnetic field and carbon-deuterium bond
 - NMR order parameter profile must be multiplied by -0.5 for comparison to previously defined profile

CHEM8711/7711: Lipid and DNA Modeling

Lipid Surface Areas

- Examples
 - Dilauroylphosphatidylethanolamine (DLPE)
 - Ammonium head group
 - 39-51 Å²
 - Dimyristoylphosphatidylcholine (DMPC)
 - Tetraalkylammonium head group
 - 60-70 Å²

CHEM8711/7711:

Lipid	and	DNA	Modeling	

Hydration

- Most lipid headgroups are hydrated with water and may require counterions
- Bilayer surfaces are subject to hydration pressure when they are brought into close proximity
- These repulsive forces may require substantial layers of water if periodic boundary conditions are used

CHEM8711/7711: Lipid and DNA Modeling

10

DNA Structure – Class Exercise

- Download a segment of double-stranded DNA from the protein databank
- Examine the structure for the following features:
 - Charged groups
 - Hydrogen bonding interactions
 - Overall morphology (shape)

CHEM8711/7711:

Lipid and DNA Modeling

Greatest Challenge

- Electrostatic Treatment and Counterions
 - Polyanionic DNA chain is surrounded by a cloud of ions that compensate for the concentration of anionic groups
 - This ion cloud is referred to as the ion atmosphere
 - The ions are mobile as they are not covalently attached to any particular phosphate group

CHEM8711/7711: Lipid and DNA Modeling

12

Manning Theory

- $\xi = q^2/(\varepsilon kTb)$
 - q=charge on the counterion
 - ε=solvent dielectric
 - k=Boltzmann constant
 - T=temperature
 - b=distance between backbone phosphates along axis
- Net charge on phosphate = $1/(N \xi)$ where N is the valency of the counterion
 - -0.24 with Na+ counterions
 - -0.12 with Mg²⁺ counterions

CHEM8711/7711: Lipid and DNA Modeling

12

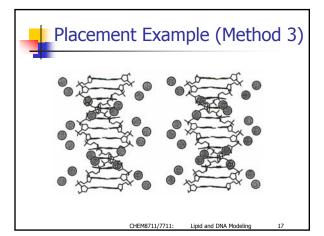
Applying Manning Theory

- DNA simulations lacking explicit counterions utilize Manning Theory to assign charges
 - Usually to phosphorous and attached oxygens
 - Either scaled by a factor of 0.24-0.34
 - Or assigned to sum to -0.34
 - Sometimes all charges in DNA scaled by 0.25

CHEM8711/7711

Lipid and DNA Modeling

14


Explicit Counterions

- Placement First method
 - Solvate DNA
 - Compute electrostatic potential (EP) on each water
 - Replace those with highest negative EP with counterions
- Placement Second method
 - Calculate electrostatic potential around DNA
 - Place counterion at grid point with highest negative EP
 - Repeat
- Placement Third method
 - Place ions 4.5-6.0 Å from P bisecting the O-P-O angle

CHEM8711/7711: Lipid and DNA Modeling

1

Counterion Equilibration

- Regardless of placement method, counterion positions need sufficient equilibration to find optimal positions
- Often such equilibration is performed while holding the DNA fixed and just allowing the water and counterions to relax

CHEM8711/7711:

Subsequent Modeling (DNA and Lipid)

 Once the initial challenges are met, subsequent modeling of these systems can be done with methods we've already discussed

M8711/7711: Lipid and DNA Modeling

Further (optional) Reading

- Reviews in Computational Chemistry, volume 11, chapter 6 (DNA counterion treatment)
- Reviews in Computational Chemistry, volume 5, chapter 5 (Lipid simulations)

HEM8711/7711: Lipid and DNA Modeling