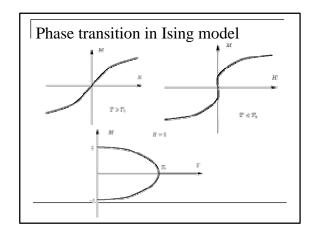
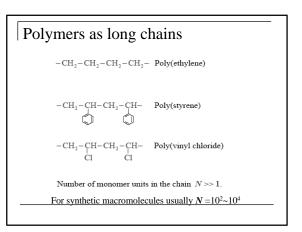
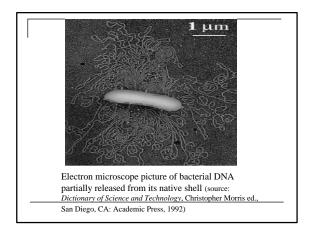
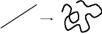

Coarse grained modeling: applications in polymers and biological systems


Presented by
Yongmei Wang
Department of Chemistry
The University of Memphis
Memphis, Tennessee 38152


Experimental data of Z for different gases 1.0 C 2.0

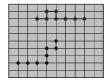
 Z for different gases at the same reduced variables (T_r and P_r) are the same. Chemical identity disappears.



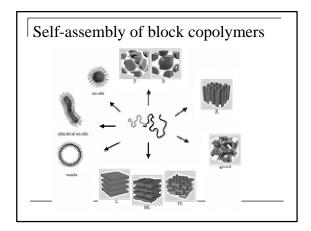


Name	Molecular Formula	Melting Point (°C)	Boiling Point (°C)	State at 25°C
methane	CH ₄	-183	-164	gas
ethane	C ₂ H ₆	-183	-89	
propane	C ₃ H ₈	-190	-42.8	
butane	C ₄ H ₁₀	-138	-0.5	
pentane	C ₅ H ₁₂	-130	36	
hexane	C ₆ H ₁₄	-95	69	
heptane	C ₇ H ₁₆	-91	98	
octane	C ₈ H ₁₈	-57	125	
nonane	C_9H_{20}	-51	151	liquid
decane	C ₁₀ H ₂₂	-30	174	
undecane	C ₁₁ H ₂₄	-25	196	
dodecane	C ₁₂ H ₂₆	-10	216	
eicosane	$C_{20}H_{42}$	37	343	
triacontane	C ₃₀ H ₆₂	66	450	solid

Physical properties of polymers are governed by three main factors


- Number of monomers in the chains, N, (N>>1)
- Monomers units are connected in the chain
 - They do not have the freedom of independent motion (unlike systems of disconnected particles, e.g. low molecular weight of gases and liquids).
- Polymer chains are flexible especially in solution or in melt

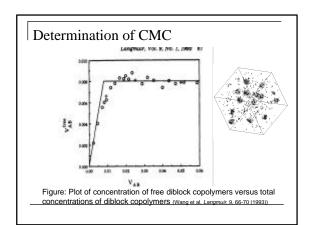
Coarse-grained models for polymers

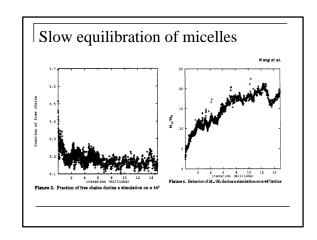


Random Walks (RW) or Selfavoiding Random Walks (SAW) on the lattice

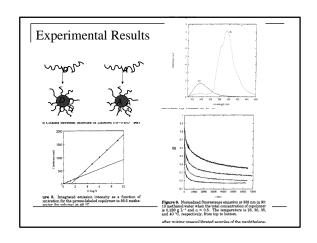
How does polymer size scales with N?

- If you treat polymer long chain as random walk (monomer overlaps are allowed), one would predict the size $R_g \sim N^{1/2}$
- When monomer overlaps are disallowed (also called excluded volume interaction), $R_g \sim N^v \cdot v$ is the Flory's exponent. (v=3/5 in three-dimension, $\frac{3}{4}$ in two-dimension, 1 in one-dimension).
- The determination of this exponent is from through the numerical data from computer simulations.

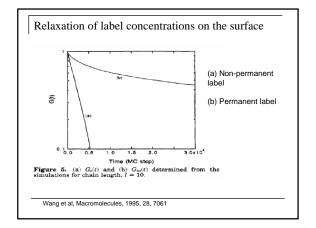

R_g variation with N in our lattice models $y = 0.4383x^{0.5875}$ $R^2 = 1$ $y = 0.4383x^{0.5875}$ $R^2 = 1$ x = 1 x =

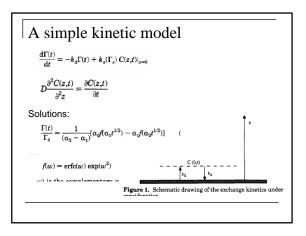


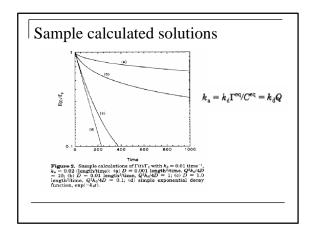
A little bit about simulation algorithm

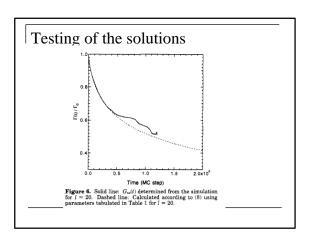

- Lattice SAW of diblock copolymers N_AN_B
- Empty lattice sites are treated as solvents, S
- Pair-wise interaction energy E_{AS}=E_{AB}>0, all other pair-wise interactions are zero.
- Start with a randomly placed polymers, equilibrate it by "reptation moves" with "Metropolis rule", i.e. accepting a "proposed move" with a probability of P

$$P = \min(\mathbf{1}, \exp(-\frac{\Delta E}{k_B T}))$$




Exchange of adsorbed polymers


- Experiments monitored displacement of Hydrogenated PMMA by Deuterated PMMA through reflectance FT-IR (exchange process)
- Measured Exchange kinetics is highly nonexponential. Some can be fitted to stretchedexponential decay, exp(-(t/τ)^{1/2})
- Exchange rate, τ_{exch} increases with M.W. of polymers dramatically.


Dynamic Monte Carlo

- Start with a well-equilibrated system, monitor exchange of polymers between adsorbed states and non-adsorbed states as a function of "simulation time"
- Simulation time is defined in Monte Carlo Steps.
 One Monte Carlo step refers to one cycle of proposed moves for all polymer beads.
- When using correct "move" algorithm, simulation relaxation time for a polymer chain $\tau \sim N^2$, Diffusion of polymer chains, $D \sim 1/N$, all give "expected" behavior for polymers in solutions.

Mapping of real polymers to coarse-grained models

- For a real polymer, one can determine characteristic ratio, C_{∞} based on : $\langle R^2 \rangle = C_{\infty} n l_0^2$ either using Rotational Isomeric State Theory or from experiments
- For polyethylene, $C_{\infty} = 6.7 \pm 0.3$, $l_0 = 1.53$ Å
- To map it to lattice polymers, use two conditions: $< R^2 > = 1.5Na^2 = C_{\infty}nl_0^2$, and $Na = nl_0$, this leads to a = 6.834Å, if n = 10,00 ($M_w = 14000$ g/mol), N = 223

Coarse-grained modeling of proteins

- The earliest use of lattice models for proteins probably is in the study of protein folding (Skolnick et al.)
- Each residue is represented by a bead on the lattice. The simplest type of protein to consider is the H-P model (i.e. only two types of beads, hydrophilic and hydrophobic beads).
- The advantage of using lattice model is fast relaxation, capable of sampling "all" conformations. Sometime it is called "ab initio" method

Elastic Network Model

VOLUME 77 NUMBER 9

PHYSICAL REVIEW LETTERS

26 August 1996

Large Amplitude Elastic Motions in Proteins from a Single-Parameter, Atomic Analysis

Monique M. Tirion* Department of Membrane Research and Biophysics, Weizmann Institute of Science, Rehovot 76100, Israel (Received 22 April 1996)

Normal mode analysis (NMA) is a leading method for studying long-time dynamics and elasticity "Notinate mode analysis (Noticy) is a detailing memoral our susaying sing-sime unjoinants sime acceptant of the foundation. The method proceeds flow complete semigrancing objections characterizing the correlate and noncovalent interactions between atoms. It is widely accepted that such detailed potentials are essential to the success of NMAA. We show that as single-parameter potential is sufficient to reproduce the four dynamics in good detail. Costly and inaccurate energy minimizations are eliminated, permitting deter intalysis of crystal coordinates. The stechanges can be used for sew applications, such as mapping of one crystal form to another by means of slow modes, and studying anomalous dynamics of large proteins and complexes. [S0031-9007(96)01063-0]

PACS numbers: 87.15.Bv. 87.15.He

Tirion, M. M. Phys. Rev. Lett. 1996, 77, 1905

She replaces this complicated force-field with

$$E_P = \frac{1}{2} \sum_{\text{boxds}} K_{\theta}(b - b_0)^2 + \frac{1}{2} \sum_{\text{angles}} K_{\theta}(\theta - \theta_0)^2 + \frac{1}{2} \sum_{\text{dihedral is}} K_{\phi}[1 + \cos(n\phi - \delta)] + \sum_{\text{posibonded main}} \left[\frac{A}{r^{12}} - \frac{B}{r^{6}} + \frac{q_1 q_2}{D_F} \right].$$
 (1)

with a simple Hookean pairwise potential between atoms

I replace the habitual detailed potentials, such as the one in Eq. (1), by the Hookean pairwise potential (between atoms a and b):

$$E(\mathbf{r}_a, \mathbf{r}_b) = \frac{C}{2} (|\mathbf{r}_{a,b}| - |\mathbf{r}_{a,b}^0|)^2.$$
 (3)

Here $\mathbf{r}_{a,b} \equiv \mathbf{r}_a - \mathbf{r}_b$ denotes the vector connecting atoms a and b, and the zero superscript indicates the given initial configuration. Thus, the usual minimization of the potential energy is eliminated.

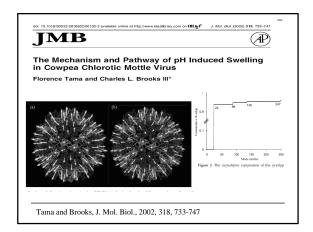
FIG. 3. Comparison of theoretical temperature factors, B, obtained with the L79 potential (dashed curve) and the potential of Eq. (1), for the G-actin:ADP-Ca⁺⁺ system. The contributions of the 30 slowest modes are included. The inset shows the scatter plot of the two data sets: the standard potential along the ordinate, and the current simplified potential along the abscissa.

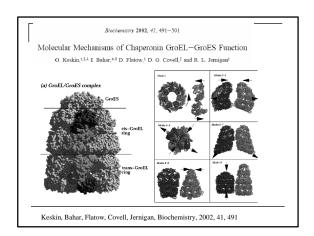
 Bahar and Jernigan further coarse grained the protein structure to one site per amino acid, and applied the Hookean Potential between residues within a cut-off distance. They obtained very insightful results.

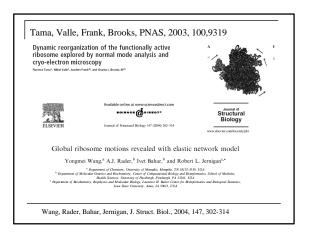
Proteins with Similar Architecture Exhibit Similar Large-Scale **Dynamic Behavior**

. Keskin,* R. L. Jernigan,* and I. Bahar**
thermical Engineering Department and Polymer Research Center, Bogazioi University, and TUBITAK
seearch Center, Bebek 80815, Islambul, Turkey, and "Molecular Structure Section, Laboratory of Exdoxy, Division of Basic Sciences, National Cancer Institute, National Institute of Health, Bethesda

PHYSICAL REVIEW LETTERS


Vibrational Dynamics of Folded Proteins: Significance of Slow and Fast Motions in Relation to Function and Stability


Ivet Bahar, Ali Rana Atilgan, Melik C. Demirel, and Burak Erman Center, Bogazici University, and TUBITAK Advanced Polymeric Materia. Bebek 30815, Istanbul, Turkay (Received 10 November 1997)


Keskin, Jernigan, Bahar, Biophys. J. 2000, 78, 2093 Bahar, Atilgan, Demirel, Erman, Phys. Rev. Lett., 1998, 80, 2733 ■ This elastic network model is extremely useful to predict the "possible" conformational change of proteins. It is much faster and efficient that "atomic detailed" normal mode analysis.

 One single slow mode contribute 80% of known conformational change of myosin

Zhang and Doniatch, PNAS, 2003, 100, 13253

Justification of its success and challenges

- The slow "global" motions of the proteins are not very sensitive to the local "chemical" specific interactions between atoms, rather it is the packing of the proteins determine its "cooperative" motions. So the coarse-grained modeling works well for this purpose.
- Elastic network model is extremely useful for studying motions of large biological assembly
- Challenges are how to correlate the motions predicted to the function of the assembly.