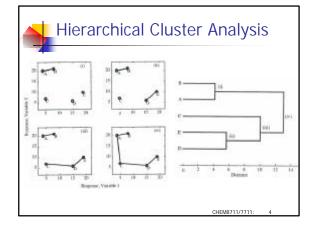


Pattern Recognition Types

- Unsupervised
 - Class memberships are not imposed, but are explored through the pattern recognition process
 - HCA, PCA
- Supervised
 - Class memberships are imposed based on knowledge about the system
 - A training set with known class memberships is required
 - KNN, SIMCA


CHEM8711/7711:

Hierarchical Cluster Analysis

- Pattern recognition methods (and clustering) require some measure of similarity or distance
- Example
 - Euclidean distance = $\sqrt{(x_1 x_2)^2 + (y_1 y_2)^2 + (z_1 z_2)^2}$ (can be extended to cover any number of descriptors)
- HCA
 - Starts with single-sample clusters
 - Joins nearest clusters iteratively

CHFM8711/7711:

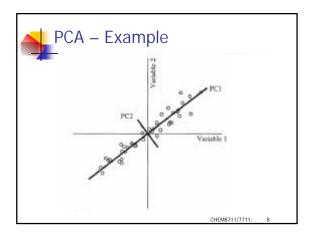
Linkage Methods

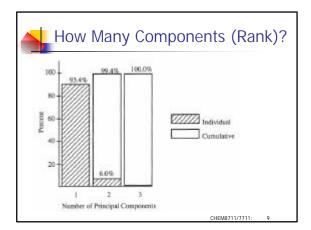
- Single
 - Distance between clusters is the distance between the two closest members of the clusters
- Complete
 - Distance between clusters is the distance between the two farthest members of the clusters
- Average
 - Distance between clusters is the average over all pairs of members in the clusters

CHEM0711/7711

HCA Strengths/Weaknesses

- Strengths
 - All variation in the data is represented
 - Good for reducing data of high dimensionality
 - Presentation is simple and standardized
- Weaknesses
 - Variables contributing most to the clustering are not apparent
 - Some of the distance data is lost
 - Doesn't assist in human interpretation


CHEM8711/7711:



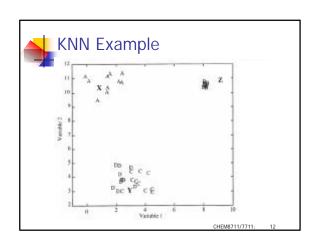
Principal Components Analysis

- Principal components analysis is a variable reduction method (an alteration of the coordinate system) – allowing visual analysis of multi-dimensional data in fewer dimensions
- The first principal component explains the maximum amount of variation possible in the data set in one direction – the % of variation explained can be precisely calculated

CHEM8711/7711:

PCA Strengths/Weaknesses

- Strengths
 - Displays highly dimensional data with relatively few plots
 - Can filter noise from data sets
 - Can determine amount of variation contained in each descriptor (loading)
- Weaknesses
 - Inherent dimensionality (rank) must be determined
 - If the dimensionality is greater than three, visualization is still difficult


CHEM8711/7711: 10

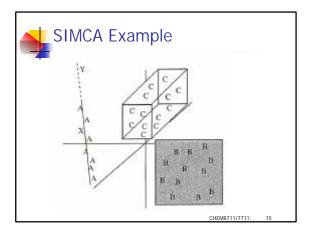
K-Nearest Neighbor

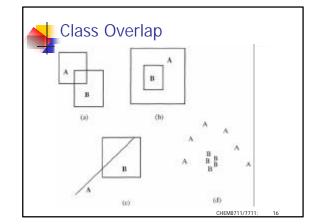
- A supervised pattern recognition technique
- Class membership of unknowns is assigned on the basis of the K nearest samples
- An optimal value of K is determined through cross-validation

CHEM0711/7711: 1:

KNN Strengths/Weaknesses

- Strengths
 - Simple to implement
 - Can be used with few examples per class
 - Additions to training set are easily accommodated
- Weaknesses
 - No outlier detection (a classification is always made)
 - Class shape information is not utilized


CHEM8711/7711: 1



SIMCA

- Soft Independent Modeling of Class Analogies (SIMCA)
- Applies PCA to model shape and position of the object formed by samples for class definition
- Unknown objects are predicted on the basis of their inclusion in a classes object

CHEM8711/7711:

SIMCA Strengths/Weaknesses

- Strengths
 - Can detect if a sample does not have membership in any class of the training set
 - Both shape and position of the class object are used (not required to be linear)
 - Signal averaging can occur as PCA is used
- Weaknesses
 - Many samples per class are required for accurate object shape and size
 - Statistical classification criteria aren't always applicable

CHEM8711/7711: 17

Why Cluster?

- Conformational analysis of relatively large structures provides many conformations, many of these fall in families having similar shape
- De novo design produces a wide variety of structures, might want to synthesize one representative from each cluster
- Combinatorial library design can select representative examples from different clusters for synthesis

CHEM8711/7711: 1

Combinatorial Library Design

- Consideration 1: Library Purpose
 - Focused: working with 1 biomolecular target
 Probably will use existing leads to help design library
 - General: working with many biomolecular targets
 Probably want a very diverse group of structures
- Consideration 2: Synthetic Strategies
 - Library design must take into account the chemistry that can be used to enumerate the library as well as the available starting materials

CHEM8711/7711: 19

What is diversity?

- Should be measured by the same criteria that determine biological activity:
 - Pharmacodynamic considerations
 - Shape
 - Size
 - Electron Distribution
 - Pharmacokinetic considerations
 - Hydrophobicity
 - Size
 - Metabolism
- Many of these are reflected in standard QSAR descriptors

CHEM8711/7711:

. . .__ .

Class Exercise

- Consider how some of your modeling results obtained so far could benefit from clustering
- Cluster your data as you determined above
 OR
- Perform a conformational search on a relatively large compound
- Calculate descriptors that characterize shape and/or electronics of the conformations
- Cluster your conformational search results

CHEM8711/7711: 21

Class Exercise, cont'd

- What can you learn from your clustering?
 - How do the number of clusters compare to the number of data points?
 - Do members of the cluster seem to have anything in common to you?

CHEM8711/7711: 2

Reading

First Edition: Section 8.11-8.12Second Edition: 9.13-9.14, 12.14

CHEM8711/7711: