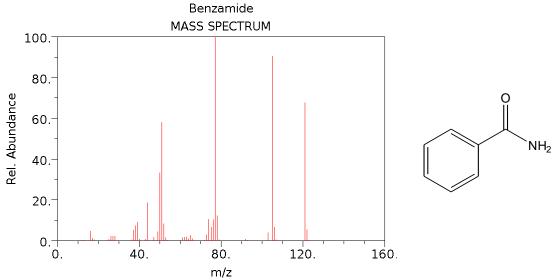
1. Methodology

http://www.chemguide.co.uk/analysis/masspec/howitworks.html

http://en.wikipedia.org/wiki/Mass_spectrometry


http://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/Spectrpy/MassSpec/masspec1.htm

- 1.1. Ionize sample in gas phase
- 1.2. Depending on ionization method and sample- mixture of ions with different mass
- 1.3. determine mass molecular weight, formula, structure
- 1.4. separation of ions by mass
 - 1.4.1. m/z = measure mass-to-charge ratio
 - 1.4.2. 200 Mass with +2 charge has same m/z as 100 mass of +1 charge
- 1.5. path in magnetic and electric field depends on mass and charge particle
- 1.6. acceleration to specific velocity
 - 1.6.1. F = ma, a = F/m
 - 1.6.2. $\mathbf{F} = z\mathbf{E}$, $\mathbf{E} = \text{magnitude}$ and direction of electric field
 - 1.6.3. $\mathbf{a} = z\mathbf{E}/m$
- 1.7. Most mass spectrometers have a method to separate mixtures of compounds
 - 1.7.1. Sample does not have to be pure to determine MW, formula, structure
 - 1.7.2. MS interfaced to chromatograph- gas or liquid
- 2. Mass Spectrum EI, electron impact causes ionization and fragmentation
 - 2.1.1. Ionization forms molecular ion and fragments
 - 2.1.2. $CH_3OH + e^- \rightarrow CH_3OH^{\bullet+}(m/z 32) + 2e^-$ (orbitals?)
 - 2.1.3. Fragments to radical and cation
 - 2.1.3.1. $CH_3OH^{\bullet +} \rightarrow CH_2OH^+(m/z31) + H^{\bullet}$ (orbitals?)
 - 2.1.3.2. $CH_3OH^{\bullet +} \rightarrow CH_3^+(m/z15) + OH^{\bullet}$
 - 2.1.4. Fragmentation depends on bond energies and fragment stabilities
 - 2.1.5. base peak largest peak set to 100%
 - 2.1.6. molecular ion peak, M+
 - 2.1.7. Figure 1.1
- 3. Ionization methods
 - 3.1. El, electron impact

- 3.1.1. Electron beam, velocity = 70 ev kinetic energy
- 3.1.2. 15 ev ionization potential typical most molecules
- 3.1.3. Excess energy, 2 electrons plus disruption of bonds (3-10 ev)
- 3.1.4. Fragmentation pattern: intensity/masses reproducible at standard condition
- 3.1.5. Molecular ion often not detected, why? Fix?
- 3.1.6. EI-MS, >400,000 published spectra, computer searchable
- 3.2. CI, chemical ionization
 - 3.2.1. Reagent gas like CH₄ is ionized
 - 3.2.2. CH₅⁺ is formed (and other cations)
 - 3.2.3. CH₅+, transfers a proton during low energy collision (5 ev)
 - 3.2.4. [M+1]⁺ often is base peak, fragmentation less likely
 - 3.2.5. [M-1]⁺ by hydride abstraction, what is abstraction product?
 - 3.2.6. [M+15]⁺ CH₃⁺ addition
 - 3.2.7. other ion additions [M+29]+, [M+41]+ how?
 - 3.2.8. Compare EI and CI for 3.4-dimethoxyacetophenone, Figure 1.3
- 3.3. Desorption methods non-volatile samples
 - 3.3.1. Sample diluted in solid or non-volatile liquid
 - 3.3.2. FAB fast atom bombardment- collision with argon or xenon (6-10 ev)
 - 3.3.3. LSIMS- liquid secondary ionization mass spectrometry- Cs⁺ (10-30 ev)
 - 3.3.4. MALDI matrix assisted laser desorption ionization matrix molecules like nicotinic acid vaporize absorb pulsed laser radiation to protonate anylate -600,000 MW
- 3.4. ESI Electrospray Ionization Figure 1.7
 - 3.4.1. Sample in solution introduced via fine capillary directly into vacuum
 - 3.4.2. Capillary has high voltage
 - 3.4.3. Droplets form with excess charge
 - 3.4.4. Evaporation creates high charge density
 - 3.4.5. Coulombic repulsion liberates charged analyte
 - 3.4.6. Useful for proteins that have multiple protonation
 - 3.4.7. Single fragment can have several charges and M/z ratios
 - 3.4.8. 40 charges on a single peptide are common

- 3.4.9. Two ions for same M_s fragment, differ by single charge: [M_s+zH^+] and [$M_s+(z+1)H^+$]
- 3.4.10. The two peaks appears, $m_1 = (M_s+zH)/z$ and $m_2 = (M_s+(z+1)H)/(z+1)$
- 3.4.11. Eliminate M_s and solving for z
 - 3.4.11.1. : $zm_1 zH = M_s$
 - 3.4.11.2. $(z+1)m_2 (z+1)H = M_s$
 - 3.4.11.3. $zm_1 zH = (z+1)m_2 (z+1)H$
 - 3.4.11.4. $z(m_1-m_2) = m_2 H \Rightarrow z = \frac{m_2 H}{m_1 m_2}$
 - 3.4.11.5. computer programs can compare peaks to see which can originate from the same fragment with different number of protons
- 3.4.12. ESI is useful for determining amino acid composition and sequence
- 3.4.13. Peptides tend to fragment at amide backbone Figure 1.7
- 4. Mass analyzer
 - 4.1. acceleration of ions in electric field to a velocity depends on mass and charge
 - 4.2. ion trajectory deflected by electric or magnetic field
 - 4.3. extent of deflection depends on velocity
 - 4.4. fragments with same charge and mass have same velocity
 - 4.5. fragments with same charge have velocities inversely dependent on mass: $\mathbf{a} = z\mathbf{E}/m$
 - 4.6. magnetic sector analyzer
 - 4.6.1. kinetic energy of particle accelerated through a voltage drop V: $KE = zV = mv^2/2$
 - 4.6.2. deflecting force on charged particle moving through a magnetic field: $\mathbf{F} = \mathbf{v} \times \mathbf{B}$
 - 4.6.3. the radius of the path in the magnetic field is related to the velocity and field (Introduction to spectroscopy By Pavia, Lampman, Kriz)
 - 4.6.4. $r = mv/zB \Rightarrow v = rzB/m$: rearrange and substitute for v in the KE expression
 - 4.6.5. $zV = m(r^2z^2B^2/m^2)/2 \Rightarrow m/z = r^2B^2/2V$
 - 4.6.6. for a fixed radius in a spectrometer, this equation indicates the field or voltage can be scanned to select for different m/z.
 - 4.7. quadrapole analyzer inexpensive
 - 4.7.1. oscillating fields makes ion spiral through the analyzer
 - 4.7.2. incorrect m/z spiral out of the channel and do not get detected

- 4.8. ion trap analyzer
 - 4.8.1. all ions can be trapped in cavity and then ions are ejected for specific m/z
- 4.9. Time of flight
 - 4.9.1. Ions accelerated in electric field have velocities dependent on mass
 - 4.9.2. Analyzer based on measuring time ion travels through predetermined distance
- 4.10. Fourier Transform MS
 - 4.10.1. All ions are trapped in magnetic field and accelerating the ions alternately with broadband rf electric field makes the ions move in larger and larger circles
 - 4.10.2. Different m/z absorb different frequencies
 - 4.10.3. When rf field is off, ions continue to oscillate at frequencies based on m/z
 - 4.10.4. Ions induce current in detectors at different frequencies
- 5. identification of M+
 - 5.1. may not be present or small if unstable
 - 5.2. "nitrogen rule" even mass for even number of N, odd mass for odd # of N
 - 5.3. cation and neutral fragments traced to M+ (77 + 44: C₆H₅ and CONH₂) Figure 1.1
 - 5.4. Chemical Ionization (CI) avoids high energy of electron impact (EI)
 - 5.4.1. M+1 peak is very large due to proton addition (CH₄: M+29 for C₂H₅+ addition)
 - 5.5. M+ stability
 - 5.5.1. aromatics > alkenes > cyclic > sulfide > short alkanes
 - 5.5.2. Ketones > amines > esters > ethers > carboxylic acids > aldehydes ~ amides ~ halides
 - 5.5.3. Bond energies: http://web.chem.ucsb.edu/~zakariangroup/11---bonddissociationenergy.pdf
 - 5.5.4. M-15 (CH₃) M-18 (H₂O) M 31 (OCH₃) suggest M+ is molecular ion
 - 5.5.5. Not often observed for alcohols, nitrates, nitro, nitriles, highly branched
- 6. Molecular formula
 - 6.1. obtain from molecular ion peak
 - 6.2. add masses of most abundant isotopes

NIST Chemistry WebBook (http://webbook.nist.gov/chemistry)

6.2.1. M+ = 121: page 50 in SWK (61 in pdf)

$$7 \times {}^{12}C = 84, 7 \times {}^{1}H = 7, 1 \times {}^{14}N = 14, 1 \times {}^{16}O = 16$$

6.3. M+1, M+2, caused by other isotopes

6.3.1. M+1 is about 8% of M+ reproducible?

6.3.2. ¹³C has relative abundance of 1.1% of ¹²C

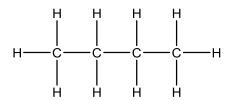
6.3.3. M+1 peak should be 7 x 1.1 = 7.7% due to presence of 13 C

6.3.4. ¹⁵N has relative abundance of 0.38% of ¹⁴N

6.3.5. contribution of N and C is 8.1%, reproducible?

6.4. isotopic peaks can often be used to determine molecular formula

6.5. how would you know silicon is not contributing to M+1?


element	isotope	Relative	isotope	Relative	isotope	Relative
		abundance		abundance		abundance
Carbon	¹² C	100	¹³ C	1.11		
Hydrogen	¹ H	100	² H	0.016		
Nitrogen	¹⁴ N	100	¹⁵ N	0.38		
Oxygen	¹⁶ O	100			¹⁸ O	0.2
Fluorine	¹⁹ F	100				
Silicon	²⁸ Si	100	²⁹ Si	5.10	³⁰ Si	3.35
³¹ phosphorous	³¹ P					

Sulfur	³² S	100	³³ S	0.78	³⁴ S	4.40
Chlorine	³⁵ Cl	100			³⁷ Cl	32.5
Bromine	⁷⁹ Br	100			⁸¹ Br	98.0
iodine	¹²⁷	100				

- 6.6. high resolution MS see Table 1.4, page 15 SWK (pdf page 26)
 - 6.6.1. masses are not exact whole numbers, ¹⁴N = 14.0031
 - 6.6.2. $^{12}CH_2 = 12.0000 + 2 \times 1.0078 = 14.0156$
 - 6.6.3. so molecular formulas can often be determined by high resolution MS
 - 6.6.4. look up mass 121 page 50 in SWK (61 in pdf): 15 entries with different formulas and mass
 - 6.6.5. $C_2H_5N_2O_4 = 121.0249$, $C_2H_7N_3O_3 = 121.0488$... $C_9H_{13} = 121.1018$
 - 6.6.6. \$\$\$\$\$ 600k
 - 6.6.7. Determine molecular formulas for 114.0651, 141.081, 201.2104
- 7. Degree of unsaturation = index of hydrogen deficiency = # of double bonds and rings

7.1. IHD =#C -
$$\frac{\#H}{2}$$
 - $\frac{\#X}{2}$ + $\frac{\#N}{2}$ + 1. X = halogens (monovalent)

- 7.2. Eliminate possible structures
- 7.3. could indicate olefin, aromatic, C=Y, confirm by IR or NMR, hydrogenation
- 7.4. Butane, C_4H_{10} , IHD = 4 10/2 + 1 = 0

- 7.5. Each interior carbon has 2H
- 7.6. Each terminal carbon has 2H + 1
- 7.7. Total #H = 2#C + 2 = 2*4 + 2 = 10, alkane formula = C_nH_{2n+2}
- 7.8. Remove two hydrogen atoms

- 7.8.1. Formally make a diradical
- 7.8.2. Join radicals to make alkene or ring: one double bond or ring
- 7.8.3. Hydrogen deficiency of 2H (relative to alkane) leads to one ring or double bond
- 7.8.4. IHD = 1 for every double bond or ring or for every 2H missing
- 7.9.IDH = #H missing/2
- 7.10. Missing #H = 2#C+2 #H
- 7.11. Divide equation by 2: $IHD = \#C \frac{\#H}{2} + 1$
- 7.12. Remove 4H: 2 double bonds and rings, other possibilities

7.13. Effect of halogens: replaces H

7.13.1.
$$IHD = \#C - \frac{\#H}{2} - \frac{\#X}{2} + 1$$

7.13.2. IHD = $4 - 5/2 - \frac{1}{2} + 1 = 2$ same as non halogenated

7.14. Effect of nitrogen, adds one hydrogen

7.14.1.
$$IHD = \#C - \frac{\#H}{2} - \frac{\#X}{2} + \frac{\#N}{2} + 1$$

7.15. IHD = 4 - 7/2 + 1/2 + 1

- 7.16. Affect of oxygen? sulfur?, phosphorous? Silicon?
- 7.17. Calculate IHD and show two structures: C₁₀H₁₇Br (1b), C₁₃H₁₈O (1c), C₁₃H₉NO₃ (1i)
- 8. Ion formation general observations for electron impact (EI)
 - 8.1. form even M+ if #N is even, heptane
 - 8.2. M+ are odd masses if #N is odd
 - 8.3. M+ intensity decreases with branching: cleavage favored by branching, examples?
 - 8.4. M+ intensity decreases with molecular weight
 - 8.5. double bonds and rings stabilize M+
- 9. Fragment ions
 - 9.1. Electron impact can remove most any valence electron
 - 9.1.1. Electrons appear to rearrange to form most stable ions
 - 9.1.2. Highest occupied orbitals will have a vacancy
 - 9.1.3. Butane? Butene? Pentanol? Phenol?
 - 9.2. Structure of initial radical cation suggests possible fragments
 - 9.3. Cleavage favored at branching points
 - 9.3.1. Form most stable cation
 - 9.3.2. $CH_3^+ < CH_2R^+ < CHR_2^+ < CR_3^+$
 - 9.4. double bonds promote allylic cation formation.
 - 9.4.1. sometimes both cation and radical paths occur, 2 peaks add up to M+
 - 9.4.2. never see radicals

9.5. tropylium ion 91 m/z forms from alkylbenzenes

9.6. Unsaturated rings undergo reverse Diels-Alder addition

- 9.7. β cleavage to heteroatoms
 - 9.7.1. "ionize" lone pair

- 9.8. elimination of neutral, stable, small molecules
 - 9.8.1. H₂O, H₂S, CO, CO₂, HCN
 - 9.8.2. Suggest M+ structures and initial cleavage

- 9.9. McLafferty rearrangement
 - 9.9.1. Usually occurs when carbonyl and γ hydrogen present
 - 9.9.2. An even mass ion is formed

- 9.10. Appendix B epage 79– common fragment ions: 43- C₃H₇, CH₃C=O, C₂H₅N
- 9.11. Appendix C epage 81 neutral common fragments lost not observed
- 10. Hydrocarbons Figure 1.14
 - 10.1. alkanes clusters of peaks, differ by 14 units
 - 10.1.1. C_nH_{2n+1} , m/z = 14n + 1
 - 10.1.1.1. applies to straight chain (i. e., CH₃(CH₂)_n) and branched alkyl fragments
 - 10.1.1.2. branching decrease M+, fragmentation at branch point (stable cation)
- 11. alkenes cleave to give stable fragments Figure 1.16 (double bond migration)
 - 11.1.1. allylic radicals and cations
 - 11.1.2. identify ion with arrows, radical pair, how they are formed
- 12. aromatics
 - 12.1.1. strong M+, phenyl, C₆H₅: 77 m/z
 - 12.1.2. alkyl arene 91 m/z for tropylium

12.1.3. 65 m/z for acetylene elimination from tropylium

13. alcohols and ethers

- 13.1. alcohol and ether molecular ions readily cleave, M+ small or undetected
- 13.2. β cleavage results in m/z = 31 for primary alcohols

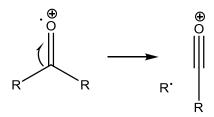
13.3. M-18, water elimination: radical abstraction

$$H_2O$$
 H_2O
 H_2O
 H_2O

13.4. Water and alkene elimination: hydride transfer (abstraction)

CC cleavage to make new terminal vinyl cation.

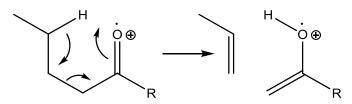
- 13.5. Compare pentanols in Figure 1.18
 - 13.5.1. Linear versus branched
 - 13.5.2. Base peaks?
 - 13.5.3. β-cleavage, Water, water + alkene? Which is favored? Why?
 - 13.5.4. Complimentary peaks
 - 13.5.4.1. Pentanol: 31 and 57
 - 13.5.4.2. 2 pentanol: 45 and 43
 - 13.5.4.3. 2-methyl-3-butanol: 59 and 29
- 13.6. ethers are similar β cleavage, then alkene cleavage


14. Aliphatic ketones

14.1. M+ normally observed

14.2. Acyl cleavage - (α to carbonyl)

14.2.1. M+ – loss of non-bonding electron


14.2.2. Form radical and acylium ion

14.3. McLafferty rearrangement

14.3.1. γ-CH abstraction followed by reverse Diels Alder

14.3.2. Neutral olefin and enol cation radical

15. Aldehydes figure 1.24 for nonanal

15.1. Like ketones - strong M+

15.2. also M-1 peak

16. Carboxylic acids See figure 1.25

16.1. Weak M+

16.2. McLafferty rearrangement

16.3. α -cleavage to CO

16.4. Aliphatic chains show mass 14 interval clusters, prominent C_nH_{2n-1}O₂

16.4.1. Acid formula C_nH_{2n}O₂, loose what? Formula?

- 17. Carboxylic acid esters
 - 17.1. McLafferty rearrangement
 - 17.2. α -carbon cleavage is common
 - 17.3. If the **acid function** dominates, like carboxylic acid aliphatic chains show mass 14 interval clusters, prominent C_nH_{2n-1}O₂
 - 17.4. If the **alcohol function** dominates, eliminates acid like alcohols eliminate water.
- 18. Predict fragmentation pattern for Exercise 1.1 (epage 50): a, c, d, e, f, g
- 19. Amines
 - 19.1. alicylic M+ weak, cyclic is strong
 - 19.2. Like alcohols, amine undergo β-cleavage
 - 19.3. For primary amine, M-1 commonly observed

$$H_2N$$
 C
 R
 H_2N
 C
 R
 H_2N
 R
 R

- 20. Amides
 - 20.1. McLafferty rearrangement- m/z 59, H2NC=OH+CH2•
 - 20.2. α -C-C cleavage yields 44 m/z = CONH₂
- 21. Nitriles
 - 21.1. Weak M+
 - 21.2. M-1

- 22. Nitro compounds
 - 22.1. Aliphatic: weak M+, NO+ (m/z 30) and NO₂+ (m/z 46), hydrocarbon fragments

22.2. Aromatic – strong M+, NO₂+ (m/z 46), phenoxy cation with NO loss (m/z 30)

23. Sulfur compounds

- 23.1. ³⁴S contribution to M+2 with 4.4%
- 23.2. Thiols M+ normally strong, β -cleavage (CH₂=SH+, m/z = 47)

- 23.2.1. M-34: Eliminate H₂S, What is other fragment? RC+H₂CH₂·
- 23.2.2. Further fragmentation like alcohols
- 23.3. Sulfides M+ normally strong
 - 23.3.1. Fragmentation similar to ethers
 - 23.3.2. Can be distinguished from thiols by missing M-H₂S or M-SH peaks

24. Halogens

24.1. Chlorinated and brominated compounds have distinctive M+:M+2:M+4:M+6 patterns

Chlorine	³⁵ Cl (100)	³⁷ Cl (32.5)		
Bromine	⁷⁹ Br (100)	⁸¹ Br (98.0)		

- 24.2. Figure 1.29 and Table 1.5
- 24.3. Patterns extend to fragment
- 24.4. Such large M+2 peaks would require a lot of carbons
- 25. Work 1.6 g, epage 50, 98.0763