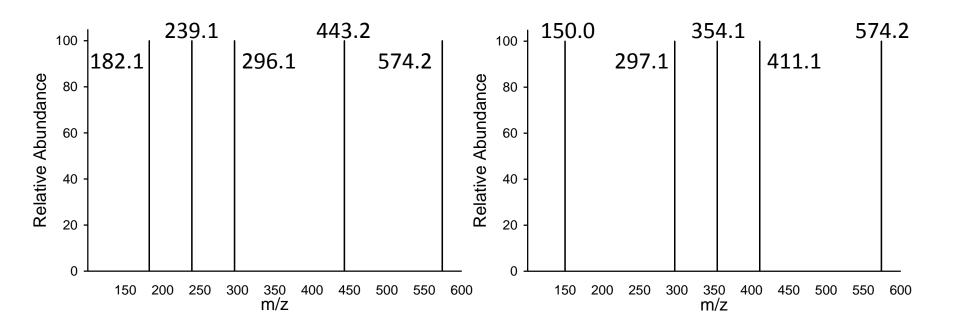
- Lipids
 - Not different than other organic small molecules
- Carbohydrates
 - Polymers of monosaccharides linked via glycosidic bonds (acetals/ ketals) many different combinationsvery interesting no time
- Nucleic acids
 - Polymers of nucleotide linked via phosphodiester bonds- MS not generally used....why?
- Proteins/ Peptides
 - Remainder of this lecture

- Say you have a purified protein/ peptide sample and you need to know what it is
 - How do you go about identifying it?
 - Mass Spectrometry is the modern way to solve this problem
 - Proteins and peptides are easily ionized using modern sources
 - A little biochemistry knowledge makes this a tractable problem (with the help of some pioneers)

- Mass Spectrometry Based-Sequencing
 - Mass Analyzers
 - Separates compounds based on mass/ charge (m/z)
 - A compound with mw = 100 g/mol that have a +1 charge will be seen at m/z 101, why? mw + 1 (mass of adding H⁺)/ charge of 1
 - The same compound with a +2 charge will be seen at m/z 51,
 why? mw + 2 (mass of adding 2 H⁺)/ charge of 2
 - Two possible approaches
 - Mass Fingerprinting (one mass [M+H]+) used to ID (ADGCY same mass as YCGDA same mass as CGDAY, etc)
 - Peptide Sequencing (select [M+H]+) fragment into many smaller masses and look at the pieces to ID (MUCH more confidence)

- Mass Spectrometry Based-Sequencing
 - Source (ionize the samples)
 - Peptides analyzed in acidic aqueous solutions (allows positive ions to be formed (singly and doubly charged most common), this makes fragmentation along the backbone relatively easy and straightforward
 - This happens either by applying heat and high voltage (1-4 kV) (ESI) or by using laser light and an organic matrix molecule to transfer energy to the peptide (MALDI)

- So we just determine the overall mass of entire proteins, right? (Mass fingerprinting)
 - What are the issues with this approach?
 - How about determining the mass of pieces (peptides) of proteins?
- In most cases proteins are identified based on peptide fragments (Sequencing)
 - MS after specific enzymatic digestion
 - Two main approaches


- What is the general structure of an amino acid?
- What is the general structure of a polypeptide?
- What is the convention for writing/ drawing peptide sequences?

Amino Acid	Abbreviation	Kesidue Mass (Mono, Da)	Amino Acid Mass (Mono, Da)	Immonium Ion Mass (Nom., Da)	Side-chain Mass (Nom., Da)	Neutral Loss (Nom., Da)	
Alanine	A	71.0371	89.04767	44	15		
Arginine	R	156.1011	174.1117	129	100	17	
Asparagine	N	114.0429	132.0535	87	58	17	
Aspartic Acid	D	115.0269	133.0375	88	59	18	
Cysteine	С	103.0092	121.0198	76	47	34(92)	
Glutamic Acid	Е	129.0426	147.0532	102	73	18	
Gluatamine	Q	128.0586	146.0692	101	72	17	
Glycine	G	57.0215	75.03207	30			
Histidine	Н	137.0589	155.0695	110	81		
Isoleucine	I	113.0841	131.0947	86	57		
Leucine	L	113.0841	131.0947	86	57		
Lysine	K	128.0950	146.1056	101	72	17	
Methionine	M	131.0405	149.0511	104	75	48	
Phenylalanine	F	147.0684	165.079	120	91		
Proline	P	97.0528	115.0634	70			
Serine	S	87.0320	105.0426	60	31	18	
Threonine	T	101.0477	119.0583	74	45	18	
Tryptophan	W	186.0793	204.0899	159	130		
Tyrosine	Y	163.0633	181.0739	136	107		
Valine	V	99.0684	117.079	72	43		

- Peptide Ladder Sequencing
 - Relatively small, pure peptide
 - Incompletely treat with peptidase
 - Amino peptidase (cleaves 1 amino acid at a time from the N-terminus)
 - Carboxy peptidase (cleaves 1 amino acid at a time from the C-terminus)
 - Results in a nested set of peptides differing by the mass of each residue
 - Not the same as sequence determination by MS/MS

Carboxypeptidase digestion

Aminopeptidase digestion

 Aminopeptidase digestion of peptide U yields ions at m/z 132, 245, 359, 474, 561, 690, and 876 what is the sequence of this peptide?

 Carboxypeptidase digestion of peptide U2 yields ions at m/z 90, 221, 350, 497, 644 what is the sequence of this peptide?

- Limitations of peptide laddering?
 - Pure sample a must
 - Has to be relatively small (<2000 Da)
 - Multiply charged fragments cause a problem
 - Incomplete digestion required
 - Too much problematic
 - Too little problematic

- How do we deal with complex mixtures of proteins/ peptides?
- Or unknown samples?
- Or samples that are likely to be greater than ~2000 Da?

Collect sequence information for tandem mass spectrometry experiments

$$H_2N$$
 R_1
 H_2
 R_3
 H_3
 H_4
 H_4
 H_4
 H_5
 H_4
 H_5
 H_6
 H_7
 H_8
 H_8

$$H_2N$$
 H_2N
 H_2N
 H_2N
 H_2N
 H_2N
 H_3
 H_4
 H_4
 H_5
 H_6
 H_6
 H_6
 H_6
 H_7
 H_7

 b_2

- If you know the sequence of your protein/ peptide then interpreting MS/MS data is relatively straightforward
- Based on the sequence you can calculate appropriate fragmentations and compare them to the experimental data
- For example (actually four examples)...

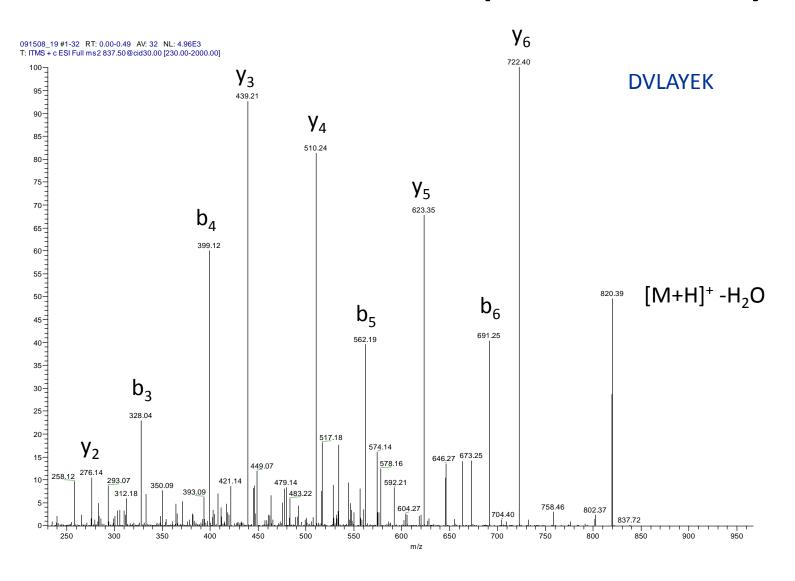
- Draw the structure of penta-glycine (uncharged)
- Identify all the b- and y-series cleavages
- Draw all the possible protonated species for this structure
- Calculate the m/z for all b- and y-series ions (nominal masses)

$$[M+H]^{+} = 304$$

$$247 \quad 190 \quad 133 \quad 76$$

$$y_{4} \quad y_{3} \quad y_{2} \quad y_{1}$$

$$H_{2}N \quad O \quad H \quad O \quad H \quad O$$


$$b_{1} \quad b_{2} \quad b_{3} \quad b_{4}$$

$$58 \quad 115 \quad 172 \quad 229$$

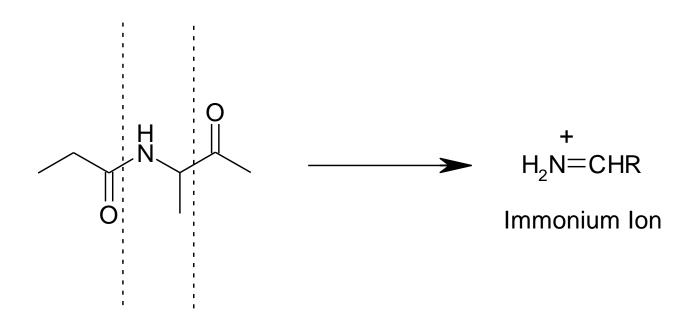
- Draw the structure of GYNKE under acidic LC-MS conditions (i.e. H₂0:ACN:H₃COOH, 50/50/0.1 v/v/v)
- Calculate the molecular weight (nominal) and anticipated full scan m/z for this peptide
- Show the mechanism for the formation of the b_3 -and y_4 -ion of this peptide
- Calculate all b- and y-series ions resulting from the low energy CID of this peptide (nominal masses)

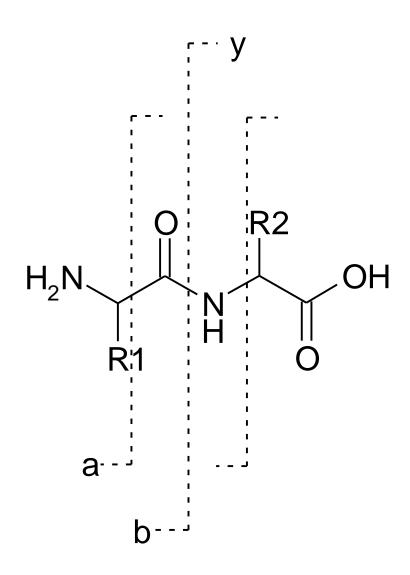
- Draw the structure of TQSTFK under acidic LC-MS conditions (i.e. H₂0:ACN:H₃COOH, 50/50/0.1 v/v/v)
- Calculate the molecular weight (nominal) and anticipated full scan m/z for this peptide
- Show the mechanism for the formation of the b_5 and y_3 -ion of this peptide
- Calculate all b- and y-series ions resulting from the low energy CID of this peptide (nominal masses)

- Draw the structure of VLRIST under acidic LC-MS conditions (i.e. H₂0:ACN:H₃COOH, 50/50/0.1 v/v/v)
- Calculate the molecular weight (nominal) and anticipated full scan m/z for this peptide
- Show the mechanism for the formation of the a_2 and y_2 -ion of this peptide
- Calculate all b- and y-series ions resulting from the low energy CID of this peptide (nominal masses)

- What if you are conducting LC-MS/MS analysis of peptide digests and you do not know their sequences?
- How do you determine sequence information from these data?

 De novo peptide sequencing or determining sequence information without prior knowledge


- Modern MS software packages will do de novo sequence analysis via the comparison of MS/MS data against known protein database information
- Proteins are first digested in silico to generate appropriate fragments (tryptic, etc), then band y-series ions are calculated
- Comparisons are made and correlations scores are calculated


- Many times important data will require manual verification of the "automated analysis"
- To prevent the data reduction and evaluation being thought of as a "black box" you need to understand how to do de novo sequencing yourselves
- This website walks you thorugh the steps at your own pace
 - http://www.ionsource.com/tutorial/DeNovo/low_mass_match.htm

- De novo sequencing rules (MS/MS according to Dass)
- 1. Look for immonium ions, this provides a hint to the residues present (but no their relative positions) this is problematic for ion trap data (why?)
- 2. Ignore loss of neutrals (H₂O, NH₃, CO₂, etc at high m/z
- 3. Look for mass pairs differing by 28 Da (loss of CO) b- and a-series

- De novo sequencing rules (MS/MS according to Dass)
- 4. Look for b₂ (b₁ not seen) this will allow determination of the first two N-terminal residues (XY or YX) be careful about redundant masses and those that are equivalent to single residue masses, determination of b₂ allows assignment of y_{n-2}
- 5. Once an ion is assigned try to determine the next in sequence by adding/subtracting residue masses of the common amino acids

- De novo sequencing rules (MS/MS according to Dass)
- 6. Try to determine y_{n-1} , once b_2 is known only two possibilities can get you from [M+H]⁺ to y_{n-1} (either X or Y)
- 7. Once the y-series is identified determine the bseries ions $(b + y) = [M+H]^+ + 1$
- 8. If you know you have a tryptic peptide look for y_1 at 147 m/z (K) or 175 m/z (R)
- 9. Using y_1 calculate and identify b_{n-1} and then follow the b-series as describe for the y-series

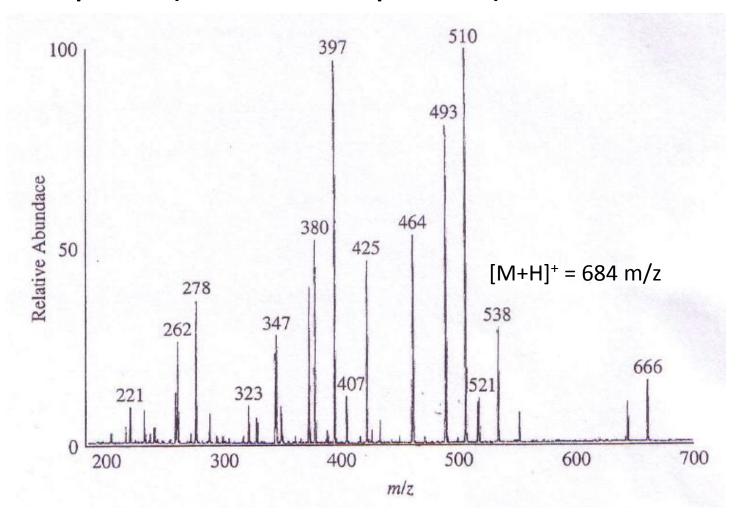
$$H_2N$$
 H_2N
 H_2
 H_3
 H_4
 H_5
 H_5
 H_5
 H_5
 H_5
 H_6
 H_7
 $H_$

Masses of b₂ ions for all possible unmodified dipeptides

	G	A	S	P	V	T	C	I/L	N	D	K/Q	E	M	H	F	R	Y	\mathbf{W}
G	<u>115</u>																	
A	<u>129</u>	<u>143</u>																
S	<u>145</u>	159	175															
P	<u>155</u>	<u> 169</u>	185	195														
\mathbf{V}	<u>157</u>	171	187	<u> 197</u>	199													
T	159	173	189	199	201	203												
C	<u>161</u>	175	<u>191</u>	201	203	205	<u> 207</u>											
I/L	171	185	201	<u>211</u>	213	215	217	227										
N	<u>172</u>	186	<u>202</u>	<u>212</u>	214	216	218	228	229									
D	173	187	203	213	215	217	219	229	230	<u>231</u>								
K/Q	186	<u>200</u>	216	226	228	230	<u>232</u>	<u>242</u>	243	244	<u>257</u>							
\mathbf{E}	187	201	217	227	229	231	233	243	244	245	<u> 258</u>	<u> 259</u>						
M	189	203	219	229	231	233	<u>235</u>	245	246	247	260	<u> 261</u>	263					
H	195	<u>209</u>	225	235	<u>237</u>	<u>239</u>	<u>241</u>	251	<u>252</u>	<u>253</u>	<u> 266</u>	267	<u> 269</u>	<u>275</u>				
F	205	219	235	245	247	<u>249</u>	251	261	<u> 262</u>	263	<u>276</u>	277	279	285	295			
R	214	228	244	<u>254</u>	<u> 256</u>	258	260	<u>270</u>	<u>271</u>	<u>272</u>	285	286	288	<u>294</u>	<u>304</u>	<u>313</u>		
Y	<u>221</u>	235	251	261	263	<u> 265</u>	267	277	<u>278</u>	279	<u> 292</u>	<u> 293</u>	295	301	<u>311</u>	<u>320</u>	<u>327</u>	
W	244	258	<u>274</u>	<u>284</u>	286	288	<u>290</u>	<u>300</u>	<u>301</u>	<u>302</u>	<u>315</u>	<u>316</u>	<u>318</u>	<u>324</u>	<u>334</u>	<u>343</u>	<u>350</u>	<u>373</u>

Amino Acid	Abbreviation	Residue Mass (Mono, Da)	Amino Acid Mass (Mono, Da)	Immonium Ion Mass (Nom., Da)	Side-chain Mass (Nom., Da)	Neutral Loss (Nom., Da)	
Alanine	A	71.0371	89.04767	44	15		
Arginine	R	156.1011	174.1117	129	100	17	
Asparagine	N	114.0429	132.0535	87	58	17	
Aspartic Acid	D	115.0269	133.0375	88	59	18	
Cysteine	С	103.0092	121.0198	76	47	34(92)	
Glutamic Acid	Е	129.0426	147.0532	102	73	18	
Gluatamine	Q	128.0586	146.0692	101	72	17	
Glycine	G	57.0215	75.03207	30			
Histidine	Н	137.0589	155.0695	110	81		
Isoleucine	I	113.0841	131.0947	86	57		
Leucine	L	113.0841	131.0947	86	57		
Lysine	K	128.0950	146.1056	101	72	17	
Methionine	M	131.0405	149.0511	104	75	48	
Phenylalanine	F	147.0684	165.079	120	91		
Proline	P	97.0528	115.0634	70			
Serine	S	87.0320	105.0426	60	31	18	
Threonine	T	101.0477	119.0583	74	45	18	
Tryptophan	W	186.0793	204.0899	159	130		
Tyrosine	Y	163.0633	181.0739	136	107		
Valine	V	99.0684	117.079	72	43		

Example 1 (Synder problem 9.3)


- Tryptic peptide with $[M+2H]2^+ = 786.0 \text{ m/z}$
- Prominent m/z include, 175.1, 246.0, 333.2, 480.3, 627.3, 684.3, 813.3, 942.4, 1056.5, 1171.5, 1285.5

What is the sequence?

Example 2 (Snyder problem 9.1)

- Tryptic peptide with $[M+2H]2^+ = 697.4 \text{ m/z}$
- Prominent m/z include, 147.2, 195.2, 260.4, 294.3, 373.5, 395.4, 444.6, 494.6, 501.6, 607.7, 614.8, 697.4, 708.8, 779.9, 787.0, 893.1, 900.2, 950.1, 999.3, 1021.2, 1100.4, 1134.4, 1199.5, 1256.6, 1393.7
- What is the sequence?

• Example 3 (Dass, example 8.5)

